scholarly journals Interoperability of Direction-Finding and Beam-Forming High-Frequency Radar Systems: An Example from the Australian High-Frequency Ocean Radar Network

2019 ◽  
Vol 11 (3) ◽  
pp. 291 ◽  
Author(s):  
Simone Cosoli ◽  
Stuart de Vos

Direction-finding SeaSonde (4.463 MHz; 5.2625 MHz) and phased-array WEllen RAdar WERA (9.33 MHz; 13.5 MHz) High-frequency radar (HFR) systems are routinely operated in Australia for scientific research, operational modeling, coastal monitoring, fisheries, and other applications. Coverage of WERA and SeaSonde HFRs in Western Australia overlap. Comparisons with subsurface currents show that both HFR types agree well with current meter records. Correlation (R), root-mean-squares differences (RMSDs), and mean bias (bias) for hourly-averaged radial currents range between R = (−0.03, 0.78), RMSD = (9.2, 30.3) cm/s, and bias = (−5.2, 5.2) cm/s for WERAs; and R = (0.1, 0.76), RMSD = (17.4, 33.6) cm/s, bias = (0.03, 0.36) cm/s for SeaSonde HFRs. Pointing errors (θ) are in the range θ = (1°, 21°) for SeaSonde HFRs, and θ = (3°, 8°) for WERA HFRs. For WERA HFR current components, comparison metrics are RU = (−0.12, 0.86), RMSDU = (12.3, 15.7) cm/s, biasU = (−5.1, −0.5) cm/s; and, RV = (0.61, 0.86), RMSDV = (15.4, 21.1) cm/s, and biasV = (−0.5, 9.6) cm/s for the zonal (u) and the meridional (v) components. Magnitude and phase angle for the vector correlation are ρ = (0.58, 0.86), φ = (−10°, 28°). Good match was found in a direct comparison of SeaSonde and WERA HFR currents in their overlap (ρ = (0.19, 0.59), φ = (−4°, +54°)). Comparison metrics at the mooring slightly decrease when SeaSonde HFR radials are combined with WERA HFR: scalar (vector) correlations for RU, V, (ρ) are in the range RU = (−0.20, 0.83), RV = (0.39, 0.79), ρ = (0.47, 0.72). When directly compared over the same grid, however, vectors from WERA HFR radials and vectors from merged SeaSonde–WERA show RU (RV) exceeding 0.9 (0.7) within the HFR grid. Despite the intrinsic differences between the two types of radars used here, findings show that different HFR genres can be successfully merged, thus increasing current mapping capability of the existing HFR networks, and minimising operational downtime, however at a likely cost of slightly decreased data quality.

Eos ◽  
2016 ◽  
Vol 97 ◽  
Author(s):  
Hugh Roarty ◽  
Lisa Hazard ◽  
Enrique Fanjul

Fourth Meeting of the Global High Frequency Radar Network; Heraklion, Crete, Greece, 22–23 September 2015


2010 ◽  
Vol 44 (6) ◽  
pp. 122-132 ◽  
Author(s):  
Jack Harlan ◽  
Eric Terrill ◽  
Lisa Hazard ◽  
Carolyn Keen ◽  
Donald Barrick ◽  
...  

AbstractA national high-frequency radar network has been created over the past 20 years or so that provides hourly 2-D ocean surface current velocity fields in near real time from a few kilometers offshore out to approximately 200 km. This preoperational network is made up of more than 100 radars from 30 different institutions. The Integrated Ocean Observing System efforts have supported the standards-based ingest and delivery of these velocity fields to a number of applications such as coastal search and rescue, oil spill response, water quality monitoring, and safe and efficient marine navigation. Thus, regardless of the operating institution or location of the radar systems, emergency response managers, and other users, can rely on a common source and means of obtaining and using the data. Details of the history, the physics, and the application of high-frequency radar are discussed with successes of the integrated network highlighted.


2020 ◽  
Author(s):  
Nydia Catalina Reyes-Suarez ◽  
Ismael Hernandez-Carrasco ◽  
Matjaz Licer ◽  
Vanessa Cardin ◽  
Miroslav Gacic ◽  
...  

<p>The Gulf of Trieste (GoT) is shared by Italy, Slovenia and Croatia, with most of its coasts belonging to Italy and Slovenia, along with the two main harbours; the Harbour of Trieste (Italy) and Koper (Slovenia). Both are subject to heavy marine traffic and exposed to different threats including oil spills, maritime accidents and SAR operations. The GOT High frequency radar network provides near-real time data of sea surface currents and waves since 2016. In this work we provide a statistical description of surface variability in terms of Lagrangian descriptors in order to elucidate the transport and retention in the GoT as well as to provide the seasonal evolution of the residence time. Among the most widely used Lagrangian techniques, we focus the study on Lagrangian Coherent Structures and Path-integrated topological variables like Lagrangian divergence and Lagrangian vorticity. </p>


2005 ◽  
Vol 22 (8) ◽  
pp. 1195-1206 ◽  
Author(s):  
Eugenio Gorgucci ◽  
V. Chandrasekar

Abstract Monitoring of precipitation using high-frequency radar systems, such as the X band, is becoming increasingly popular because of their lower cost compared to their S-band counterpart. However, at higher frequencies, such as the X band, the precipitation-induced attenuation is significant, and introduces ambiguities in the interpretation of the radar observations. Differential phase measurements have been shown to be very useful for correcting the measured reflectivity for precipitation-induced attenuation. This paper presents a quantitative evaluation of two attenuation correction methodologies with specific emphasis on the X band. A simple differential phase–based algorithm as well as the range-profiling algorithm are studied. The impact of backscatter differential phase on the performance of attenuation correction is evaluated. It is shown that both of the algorithms for attenuation correction work fairly well, yielding attenuation-accurate corrected reflectivities with a negligible bias.


OCEANS 2009 ◽  
2009 ◽  
Author(s):  
Jack Harlan ◽  
Eric Terrill ◽  
Bill Burnett

Sign in / Sign up

Export Citation Format

Share Document