scholarly journals A Superpixel-Based Relational Auto-Encoder for Feature Extraction of Hyperspectral Images

2019 ◽  
Vol 11 (20) ◽  
pp. 2454 ◽  
Author(s):  
Miaomiao Liang ◽  
Licheng Jiao ◽  
Zhe Meng

Filter banks transferred from a pre-trained deep convolutional network exhibit significant performance in heightening the inter-class separability for hyperspectral image feature extraction, but weakening the intra-class consistency simultaneously. In this paper, we propose a new superpixel-based relational auto-encoder for cohesive spectral–spatial feature learning. Firstly, multiscale local spatial information and global semantic features of hyperspectral images are extracted by filter banks transferred from the pre-trained VGG-16. Meanwhile, we utilize superpixel segmentation to construct the low-dimensional manifold embedded in the spectral domain. Then, representational consistency constraint among each superpixel is added in the objective function of sparse auto-encoder, which iteratively assist and supervisedly learn hidden representation of deep spatial feature with greater cohesiveness. Superpixel-based local consistency constraint in this work not only reduces the computational complexity, but builds the neighborhood relationships adaptively. The final feature extraction is accomplished by collaborative encoder of spectral–spatial feature and weighting fusion of multiscale features. A large number of experimental results demonstrate that our proposed method achieves expected results in discriminant feature extraction and has certain advantages over some existing methods, especially on extremely limited sample conditions.

2021 ◽  
Vol 13 (24) ◽  
pp. 5043
Author(s):  
Qian Liu ◽  
Zebin Wu ◽  
Xiuping Jia ◽  
Yang Xu ◽  
Zhihui Wei

Current mainstream networks for hyperspectral image (HSI) classification employ image patches as inputs for feature extraction. Spatial information extraction is limited by the size of inputs, which makes networks unable to perform effective learning and reasoning from the global perspective. As a common component for capturing long-range dependencies, non-local networks with pixel-by-pixel information interaction bring unaffordable computational costs and information redundancy. To address the above issues, we propose a class feature fused fully convolutional network (CFF-FCN) with a local feature extraction block (LFEB) and a class feature fusion block (CFFB) to jointly utilize local and global information. LFEB based on dilated convolutions and reverse loop mechanism can acquire the local spectral–spatial features at multiple levels and deliver shallower layer features for coarse classification. CFFB calculates global class representation to enhance pixel features. Robust global information is propagated to every pixel with low computational cost. CFF-FCN considers a fully global class context and obtains more discriminative representation by concatenating high-level local features and re-integrated global features. Experimental results conducted on three real HSI data sets demonstrate that the proposed fully convolutional network is superior to multiple state-of-the-art deep learning-based approaches, especially in the case of a small number of training samples.


Author(s):  
A. Kianisarkaleh ◽  
H. Ghassemian ◽  
F. Razzazi

Feature extraction plays a key role in hyperspectral images classification. Using unlabeled samples, often unlimitedly available, unsupervised and semisupervised feature extraction methods show better performance when limited number of training samples exists. This paper illustrates the importance of selecting appropriate unlabeled samples that used in feature extraction methods. Also proposes a new method for unlabeled samples selection using spectral and spatial information. The proposed method has four parts including: PCA, prior classification, posterior classification and sample selection. As hyperspectral image passes these parts, selected unlabeled samples can be used in arbitrary feature extraction methods. The effectiveness of the proposed unlabeled selected samples in unsupervised and semisupervised feature extraction is demonstrated using two real hyperspectral datasets. Results show that through selecting appropriate unlabeled samples, the proposed method can improve the performance of feature extraction methods and increase classification accuracy.


2019 ◽  
Vol 13 ◽  
Author(s):  
Jacintha Menezes ◽  
Nagesh Poojary

Background: Hyperspectral (HS) image data comprises of tremendous amount of spatial and spectral information which offers feature identification and classification with high accuracy. As part of the deep learning(DL) framework stacked autoencoders(SAEs) has been successfully applied for deep spectral features extraction in high dimensional data. HS deep image feature extraction becomes complex and time consuming due to the hundreds of spectral bands available in the hypercubes. Methods: The proposed method aims condense the spectral-spatial information through suitable feature extraction and feature selection methods to reduce data dimension to an appropriate scale. Further, the reduced feature set is processed by SAE for final feature representation and classification. Results: The proposed method has resulted in reduced computation time by ~300s and an improvement in classification accuracy by ~15% as compared to uncondensed spectral-spatial features fed directly to SAE network. Conclusion: Future research could explore the combination of most state-of-the art techniques.


2021 ◽  
Vol 13 (2) ◽  
pp. 268
Author(s):  
Xiaochen Lv ◽  
Wenhong Wang ◽  
Hongfu Liu

Hyperspectral unmixing is an important technique for analyzing remote sensing images which aims to obtain a collection of endmembers and their corresponding abundances. In recent years, non-negative matrix factorization (NMF) has received extensive attention due to its good adaptability for mixed data with different degrees. The majority of existing NMF-based unmixing methods are developed by incorporating additional constraints into the standard NMF based on the spectral and spatial information of hyperspectral images. However, they neglect to exploit the nature of imbalanced pixels included in the data, which may cause the pixels mixed with imbalanced endmembers to be ignored, and thus the imbalanced endmembers generally cannot be accurately estimated due to the statistical property of NMF. To exploit the information of imbalanced samples in hyperspectral data during the unmixing procedure, in this paper, a cluster-wise weighted NMF (CW-NMF) method for the unmixing of hyperspectral images with imbalanced data is proposed. Specifically, based on the result of clustering conducted on the hyperspectral image, we construct a weight matrix and introduce it into the model of standard NMF. The proposed weight matrix can provide an appropriate weight value to the reconstruction error between each original pixel and the reconstructed pixel in the unmixing procedure. In this way, the adverse effect of imbalanced samples on the statistical accuracy of NMF is expected to be reduced by assigning larger weight values to the pixels concerning imbalanced endmembers and giving smaller weight values to the pixels mixed by majority endmembers. Besides, we extend the proposed CW-NMF by introducing the sparsity constraints of abundance and graph-based regularization, respectively. The experimental results on both synthetic and real hyperspectral data have been reported, and the effectiveness of our proposed methods has been demonstrated by comparing them with several state-of-the-art methods.


2021 ◽  
pp. 0309524X2199826
Author(s):  
Guowei Cai ◽  
Yuqing Yang ◽  
Chao Pan ◽  
Dian Wang ◽  
Fengjiao Yu ◽  
...  

Multi-step real-time prediction based on the spatial correlation of wind speed is a research hotspot for large-scale wind power grid integration, and this paper proposes a multi-location multi-step wind speed combination prediction method based on the spatial correlation of wind speed. The correlation coefficients were determined by gray relational analysis for each turbine in the wind farm. Based on this, timing-control spatial association optimization is used for optimization and scheduling, obtaining spatial information on the typical turbine and its neighborhood information. This spatial information is reconstructed to improve the efficiency of spatial feature extraction. The reconstructed spatio-temporal information is input into a convolutional neural network with memory cells. Spatial feature extraction and multi-step real-time prediction are carried out, avoiding the problem of missing information affecting prediction accuracy. The method is innovative in terms of both efficiency and accuracy, and the prediction accuracy and generalization ability of the proposed method is verified by predicting wind speed and wind power for different wind farms.


2019 ◽  
Vol 16 (5) ◽  
pp. 781-785 ◽  
Author(s):  
Zhikun Chen ◽  
Junjun Jiang ◽  
Chong Zhou ◽  
Xinwei Jiang ◽  
Shaoyuan Fu ◽  
...  

2018 ◽  
Vol 10 (11) ◽  
pp. 1827 ◽  
Author(s):  
Ahram Song ◽  
Jaewan Choi ◽  
Youkyung Han ◽  
Yongil Kim

Hyperspectral change detection (CD) can be effectively performed using deep-learning networks. Although these approaches require qualified training samples, it is difficult to obtain ground-truth data in the real world. Preserving spatial information during training is difficult due to structural limitations. To solve such problems, our study proposed a novel CD method for hyperspectral images (HSIs), including sample generation and a deep-learning network, called the recurrent three-dimensional (3D) fully convolutional network (Re3FCN), which merged the advantages of a 3D fully convolutional network (FCN) and a convolutional long short-term memory (ConvLSTM). Principal component analysis (PCA) and the spectral correlation angle (SCA) were used to generate training samples with high probabilities of being changed or unchanged. The strategy assisted in training fewer samples of representative feature expression. The Re3FCN was mainly comprised of spectral–spatial and temporal modules. Particularly, a spectral–spatial module with a 3D convolutional layer extracts the spectral–spatial features from the HSIs simultaneously, whilst a temporal module with ConvLSTM records and analyzes the multi-temporal HSI change information. The study first proposed a simple and effective method to generate samples for network training. This method can be applied effectively to cases with no training samples. Re3FCN can perform end-to-end detection for binary and multiple changes. Moreover, Re3FCN can receive multi-temporal HSIs directly as input without learning the characteristics of multiple changes. Finally, the network could extract joint spectral–spatial–temporal features and it preserved the spatial structure during the learning process through the fully convolutional structure. This study was the first to use a 3D FCN and a ConvLSTM for the remote-sensing CD. To demonstrate the effectiveness of the proposed CD method, we performed binary and multi-class CD experiments. Results revealed that the Re3FCN outperformed the other conventional methods, such as change vector analysis, iteratively reweighted multivariate alteration detection, PCA-SCA, FCN, and the combination of 2D convolutional layers-fully connected LSTM.


Sign in / Sign up

Export Citation Format

Share Document