scholarly journals A Multi-Scale Superpixel-Guided Filter Feature Extraction and Selection Approach for Classification of Very-High-Resolution Remotely Sensed Imagery

2020 ◽  
Vol 12 (5) ◽  
pp. 862
Author(s):  
Sicong Liu ◽  
Qing Hu ◽  
Xiaohua Tong ◽  
Junshi Xia ◽  
Qian Du ◽  
...  

In this article, a novel feature selection-based multi-scale superpixel-based guided filter (FS-MSGF) method for classification of very-high-resolution (VHR) remotely sensed imagery is proposed. Improved from the original guided filter (GF) algorithm used in the classification, the guidance image in the proposed approach is constructed based on the superpixel-level segmentation. By taking into account the object boundaries and the inner-homogeneity, the superpixel-level guidance image leads to the geometrical information of land-cover objects in VHR images being better depicted. High-dimensional multi-scale guided filter (MSGF) features are then generated, where the multi-scale information of those land-cover classes is better modelled. In addition, for improving the computational efficiency without the loss of accuracy, a subset of those MSGF features is then automatically selected by using an unsupervised feature selection method, which contains the most distinctive information in all constructed MSGF features. Quantitative and qualitative classification results obtained on two QuickBird remotely sensed imagery datasets covering the Zurich urban scene are provided and analyzed, which demonstrate that the proposed methods outperform the state-of-the-art reference techniques in terms of higher classification accuracies and higher computational efficiency.

2010 ◽  
pp. 519-527 ◽  
Author(s):  
Silvia Di Paolo ◽  
Diego Giuliarelli ◽  
Barbara Ferrari ◽  
Anna Barbati ◽  
Piermaria Corona

2019 ◽  
Vol 11 (1) ◽  
pp. 88 ◽  
Author(s):  
Nianxue Luo ◽  
Taili Wan ◽  
Huaixu Hao ◽  
Qikai Lu

Land cover classification of urban areas is critical for understanding the urban environment. High-resolution remotely sensed imagery provides abundant, detailed spatial information for urban classification. In the meantime, OpenStreetMap (OSM) data, as typical crowd-sourced geographical information, have been an emerging data source for obtaining urban information. In this context, a land cover classification method that fuses high-resolution remotely sensed imagery and OSM data is proposed. Training samples were generated by integrating the OSM data and multiple information indexes. OSM data, which contain class attributes and location information of urban objects, served as the labels of initial training samples. Multiple information indexes that reflect spectral and spatial characteristics of different classes were utilized to improve the training set. Morphological attribute profiles were used because the structural and contextual information of images was effective in distinguishing the classes with similar spectral characteristics. Moreover, a road superimposition strategy that considers road hierarchy was developed because OSM data provide road information with high completeness in the urban area. Experiments were conducted on the data captured over Wuhan city, and three state-of-the-art approaches were adopted for comparison. Results show that the proposed approach obtains satisfactory results and outperforms the other comparative approaches.


Sign in / Sign up

Export Citation Format

Share Document