scholarly journals Quantifying the Effects of Hurricanes Irma and Maria on Coastal Water Quality in Puerto Rico using Moderate Resolution Satellite Sensors

2020 ◽  
Vol 12 (6) ◽  
pp. 964 ◽  
Author(s):  
William J. Hernández ◽  
Suhey Ortiz-Rosa ◽  
Roy A. Armstrong ◽  
Erick F. Geiger ◽  
C. Mark Eakin ◽  
...  

Coastal, benthic communities, such as coral reefs, are at particular risk due to poor water quality caused by hurricanes. In addition to the physical impacts from wave action and storm surge, hurricanes bring significant rainfall resulting in increased runoff from land. Hurricanes Irma and Maria caused record or near-record floods at many locations across Puerto Rico and resulted in major impacts on coastal and benthic ecosystems from heavy rainfall and river discharge. In this study, we use imagery from the moderate resolution Visible Infrared Imaging Radiometer Suite (VIIRS) satellite to quantify the impacts of hurricanes Irma and Maria, which struck Puerto Rico during September 2017, on the water quality of the coastal waters of Puerto Rico using the chlorophyll-a (Chl-a) and the diffuse attenuation coefficient at 490 nm (Kd490) products. The objectives include: (1) quantify the water quality and light attenuation after the hurricanes; (2) compare this event to the climatology of these parameters, and 3) evaluate long-term exposure and exceedances of various coastal areas to low levels of turbidity. The Chl-a inner shelf values increased in 2017 during the months of June (8% above baseline), July (17%), August (5%), September (8%), October (19%), and November (28%) when compared to 2012–2016 baseline data. The values for Chl-a concentration reached and exceeded 0.45 µg/L by August 2017 and persisted above that value until December 2017. The Kd490 inner shelf values for 2017 increased (in percent) for the months of June (4% above baseline), July (9%), August (10%), September (5%), October (12%), and November (7%) when compared to 2012–2016 baseline data. The values of Kd490 in August, September, and December 2017 were the highest seen during 2012–2017. Even with the limitations of spatial resolution and loss of data to cloud cover, the 6-year imagery time-series analysis can provide a useful evaluation of the effects of these two hurricanes on the coastal water quality in Puerto Rico, and quantify the exposure of benthic habitats to higher nutrient and turbidity levels.

2019 ◽  
Vol 169 ◽  
pp. 201-213 ◽  
Author(s):  
J. Norat-Ramírez ◽  
P. Méndez-Lázaro ◽  
E.A. Hernández-Delgado ◽  
H. Mattei-Torres ◽  
L. Cordero-Rivera

Author(s):  
Hiroshi Yoshioka ◽  
Tomotsuka Takayama ◽  
Yoshitaka Tanabe ◽  
Nobuaki Shiraishi

2021 ◽  
Vol 8 ◽  
Author(s):  
Juan L. Torres-Pérez ◽  
Carlos E. Ramos-Scharrón ◽  
William J. Hernández ◽  
Roy A. Armstrong ◽  
Maritza Barreto-Orta ◽  
...  

Land-based sediment stress represents a threat to many coral reefs in Puerto Rico primarily as a result of unrestricted land cover/land use changes and poor best management practices. The effects of such stresses have been documented along most coasts around the island. However, little attention has been paid to reefs located on the north coast, and very little is known about their composition and current state. Here, we present a study characterizing riverine inputs, water quality conditions, and benthic composition of two previously undescribed coral reefs (Tómbolo and Machuca reefs) located just eastward of the Río Grande de Manatí outlet in north-central Puerto Rico. This study utilizes a time series of remotely sensed ocean color products [diffuse vertical attenuation coefficient at 490 nm (Kd490) and chlorophyll-a concentration (Chl-a) estimated with data from the Visible Infrared Imaging Radiometer Suite (VIIRS)] to characterize water quality in this coastal region. In general, the months with relatively high mean daily river streamflow also coincide with months having the highest proportion of eastward wave direction, which can promote the eastward influence of river waters toward the two coral reefs sites. Kd490 and Chl-a showed a higher riverine influence closer to the watershed outlet. Kd490 and Chl-a monthly peaks also coincide with river streamflow highs, particularly at those pixels closer to shore. Tómbolo Reef, located farther eastward of the river outlet, shows a well-developed primary reef framework mainly composed of threatened reef-building species (Acropora palmata, Pseudodiploria) and high coral cover (19–51%). The benthos of Machuca Reef, located closer to the river outlet, is dominated by macroalgae with a significantly lower coral cover (0.2–2.7%) mainly composed of “weedy” coral species (Porites astreoides and Siderastrea radians). Cover of major benthic components correlates with distance from the river outlet, and with gradients in Kd490 and Chl-a, with higher coral cover and lower macroalgal cover farther from the river outlet. Coral cover at Tómbolo Reef is higher than what has been reported for similar sites around Puerto Rico and other Caribbean islands showing its ecological importance, and as up until now, an unrecognized potential refuge of reef-building threatened coral species.


2017 ◽  
Vol 49 (1) ◽  
pp. 73 ◽  
Author(s):  
Teguh Hariyanto ◽  
Trismono C. Krisna ◽  
Khomsin Khomsin ◽  
Cherie Bhekti Pribadi ◽  
Nadjadji Anwar

The decrease of coastal-water quality in the Surabaya coastal region can be recognized from the conceentration of Total Suspended Sediment(TSS ) . As a result we need a system for monitoring sediment concentration in the coastal region of Surabaya which regularly measures TSS. The principle to model and monitor TSSconcentration using remote sensing methods is by the integration of Landsat-8OLI satellites image processing using some ofTSS-models then those are analyzed for looking its suitability with TSS value direcly measured in the field ( in-situ measurement). The TSS value modeled from all algorithms validated usingcorrelation analysis and linear regression . The result shows that TSS model with the highest correlation value is TSS algorithm by Budiman (2004)with r value 0.991. Hence this algorithm can be used to investigate TSS-distribution which represent the coastal water quality of Surabaya with TSS value between 75 mg/L to 125 mg/L.


2021 ◽  
Author(s):  
Samaneh Seifollahi-Aghmiuni ◽  
Zahra Kalantari ◽  
Georgia Destouni

<p>Current understanding is fragmented of the environmental, economic, and social processes involved in water quality issues. The fragmentation is particularly evident for coastal water quality, impacted both by local land catchment and larger-scale marine pressures and impacts. Research and policy so far has primarily addressed coastal water quality issues from either a land-based or a sea-based perspective, which does not support integrated management of the coupled land-coast-sea systems affecting coastal waters. For example, mitigation measures for improving the severe Baltic Sea eutrophication have mostly focused on land-based drivers, and not yet managed to sufficiently improve coastal or marine water quality. The strong human dimension involved in these water quality issues also highlights a need for participatory approaches to facilitate knowledge integration and drive synergistic strategic planning for sustainable management of coastal water quality. Considering the Swedish water management district of Northern Baltic Proper, including its main Norrström drainage basin and surrounding coastal catchment areas and waters, this study has used a participatory approach to evaluate various land-sea water quality interactions and associated management measures. A causal loop diagram has been co-created with different stakeholder groups, following a problem-oriented system thinking approach. This has been further used in fuzzy-cognitive scenario analysis to assess integrated land-coast-sea system behavior under changing human pressures and hydro-climatic conditions. Results show that synergy of several catchment measures is needed to improve coastal water quality locally, while cross-system/sector cooperation is also needed among all contributing national catchments to mitigate coastal eutrophication at the scale of the whole Baltic Sea. Furthermore, large-scale hydro-climatic changes and long-lived nutrient legacy sources also need to be accounted for in water quality management strategies and measures. System dynamics modelling, based on co-created causal loop diagrams and fuzzy-cognitive scenario analysis like those developed in this study, can support further quantification and analysis of the impacts of various mitigation strategies and measures on regional water quality problems and their possible sustainable solutions.</p>


Author(s):  
Jhih-Shyang Shih ◽  
Charles T. Driscoll ◽  
Dallas Burtraw ◽  
Huizhong Shen ◽  
Richard A. Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document