scholarly journals A SAR Image Despeckling Method Based on an Extended Adaptive Wiener Filter and Extended Guided Filter

2020 ◽  
Vol 12 (15) ◽  
pp. 2371 ◽  
Author(s):  
Hadi Salehi ◽  
Javad Vahidi ◽  
Thabet Abdeljawad ◽  
Aziz Khan ◽  
Seyed Yaser Bozorgi Rad

The elimination of multiplicative speckle noise is the main issue in synthetic aperture radar (SAR) images. In this study, a SAR image despeckling filter based on a proposed extended adaptive Wiener filter (EAWF), extended guided filter (EGF), and weighted least squares (WLS) filter is proposed. The proposed EAWF and EGF have been developed from the adaptive Wiener filter (AWF) and guided Filter (GF), respectively. The proposed EAWF can be applied to the SAR image, without the need for logarithmic transformation, considering the fact that the denoising performance of EAWF is better than AWF. The proposed EGF can remove the additive noise and preserve the edges’ information more efficiently than GF. First, the EAWF is applied to the input image. Then, a logarithmic transformation is applied to the resulting EAWF image in order to convert multiplicative noise into additive noise. Next, EGF is employed to remove the additive noise and preserve edge information. In order to remove unwanted spots on the image that is filtered by EGF, it is applied twice with different parameters. Finally, the WLS filter is applied in the homogeneous region. Results show that the proposed algorithm has a better performance in comparison with the other existing filters.

2019 ◽  
Vol 57 (4) ◽  
pp. 1918-1927 ◽  
Author(s):  
Xiaoshuang Ma ◽  
Penghai Wu ◽  
Huanfeng Shen

Author(s):  
Zhaobin Wang ◽  
Ziye Wang ◽  
Zijing Cui ◽  
Lina Chen ◽  
Yaonan Zhang

AbstractAn effective multi-focus image fusion algorithm based on random walk is proposed in this paper. Random walk and guided filter have attracted extensive attention in image fusion. Random walk is usually used to solve probability problems and it has a good smoothing effect, and guided filter can preserve the gradient information of the image well. The combination of two algorithms can better retain the edge information of the input image. Six sets of source images and five existing methods are used in the experiment and the experimental results show that the proposed algorithm outperforms the existing methods in both subjective and objective evaluation.


Author(s):  
Hadi Salehi

Images are widely used in engineering. Unfortunately, medical ultrasound images and synthetic aperture radar (SAR) images are mainly degraded by an intrinsic noise called speckle. Therefore, de-speckling is a main pre-processing stage for degraded images. In this paper, first, an optimized adaptive Wiener filter (OAWF) is proposed. OAWF can be applied to the input image without the need for logarithmic transform. In addition its performance is improved. Next, the coefficient of variation (CV) is computed from the input image. With the help of CV, the guided filter converts to an improved guided filter (IGF). Next, the improved guided filter is applied on the image. Subsequently, the fast bilateral filter is applied on the image. The proposed filter has a better image detail preservation compared to some other standard methods. The experimental outcomes show that the proposed denoising algorithm is able to preserve image details and edges compared with other de-speckling methods.


2021 ◽  
Vol 13 (17) ◽  
pp. 3444
Author(s):  
Hao Wang ◽  
Zhendong Ding ◽  
Xinyi Li ◽  
Shiyu Shen ◽  
Xiaodong Ye ◽  
...  

Synthetic aperture radar (SAR) images are often disturbed by speckle noise, making SAR image interpretation tasks more difficult. Therefore, speckle suppression becomes a pre-processing step. In recent years, approaches based on convolutional neural network (CNN) achieved good results in synthetic aperture radar (SAR) images despeckling. However, these CNN-based SAR images despeckling approaches usually require large computational resources, especially in the case of huge training data. In this paper, we proposed a SAR image despeckling method using a CNN platform with a new learnable spatial activation function, which required significantly fewer network parameters without incurring any degradation in performance over the state-of-the-art despeckling methods. Specifically, we redefined the rectified linear units (ReLU) function by adding a convolutional kernel to obtain the weight map of each pixel, making the activation function learnable. Meanwhile, we designed several experiments to demonstrate the advantages of our method. In total, 400 images from Google Earth comprising various scenes were selected as a training set in addition to 10 Google Earth images including athletic field, buildings, beach, and bridges as a test set, which achieved good despeckling effects in both visual and index results (peak signal to noise ratio (PSNR): 26.37 ± 2.68 and structural similarity index (SSIM): 0.83 ± 0.07 for different speckle noise levels). Extensive experiments were performed on synthetic and real SAR images to demonstrate the effectiveness of the proposed method, which proved to have a superior despeckling effect and higher ENL magnitudes than the existing methods. Our method was applied to coniferous forest, broad-leaved forest, and conifer broad-leaved mixed forest and proved to have a good despeckling effect (PSNR: 23.84 ± 1.09 and SSIM: 0.79 ± 0.02). Our method presents a robust framework inspired by the deep learning technology that realizes the speckle noise suppression for various remote sensing images.


2021 ◽  
Vol 13 (18) ◽  
pp. 3636
Author(s):  
Ye Yuan ◽  
Yanxia Wu ◽  
Yan Fu ◽  
Yulei Wu ◽  
Lidan Zhang ◽  
...  

As one of the main sources of remote sensing big data, synthetic aperture radar (SAR) can provide all-day and all-weather Earth image acquisition. However, speckle noise in SAR images brings a notable limitation for its big data applications, including image analysis and interpretation. Deep learning has been demonstrated as an advanced method and technology for SAR image despeckling. Most existing deep-learning-based methods adopt supervised learning and use synthetic speckled images to train the despeckling networks. This is because they need clean images as the references, and it is hard to obtain purely clean SAR images in real-world conditions. However, significant differences between synthetic speckled and real SAR images cause the domain gap problem. In other words, they cannot show superior performance for despeckling real SAR images as they do for synthetic speckled images. Inspired by recent studies on self-supervised denoising, we propose an advanced SAR image despeckling method by virtue of Bernoulli-sampling-based self-supervised deep learning, called SSD-SAR-BS. By only using real speckled SAR images, Bernoulli-sampled speckled image pairs (input–target) were obtained as the training data. Then, a multiscale despeckling network was trained on these image pairs. In addition, a dropout-based ensemble was introduced to boost the network performance. Extensive experimental results demonstrated that our proposed method outperforms the state-of-the-art for speckle noise suppression on both synthetic speckled and real SAR datasets (i.e., Sentinel-1 and TerraSAR-X).


Author(s):  
Xiu Jie Yang ◽  
Ping Chen ◽  
◽  

To remove the speckle noise of synthetic aperture radar (SAR) images, a novel denoising algorithm based on Bayes wavelet shrinkage and a fast guided filter is proposed. According to the statistical properties of SAR images, the noise-free signal and speckle noise in the wavelet domain are modeled as Laplace and Fisher-Tippett distributions respectively. Then a new wavelet shrinkage algorithm is obtained by adopting the Bayes maximum a posteriori estimation. Speckle noise in the high-frequency domain of SAR images is shrunk by this new wavelet shrinkage algorithm. As the wavelet coefficients of the low-frequency domain also contain some speckle noise, speckle noise in the low-frequency domain can be further filtered by the fast guided filter. The result of the denoising experiments of simulated SAR images and real SAR images demonstrate that the proposed algorithm has the ability to better denoise and preserve edge information.


2020 ◽  
Vol 12 (13) ◽  
pp. 2141
Author(s):  
Ronghua Shang ◽  
Pei Peng ◽  
Fanhua Shang ◽  
Licheng Jiao ◽  
Yifei Shen ◽  
...  

In recent years, regional algorithms have shown great potential in the field of synthetic aperture radar (SAR) image segmentation. However, SAR images have a variety of landforms and a landform with complex texture is difficult to be divided as a whole. Due to speckle noise, traditional over-segmentation algorithm may cause mixed superpixels with different labels. They are usually located adjacent to two areas or contain more noise. In this paper, a new semantic segmentation method of SAR images based on texture complexity analysis and key superpixels is proposed. Texture complexity analysis is performed and on this basis, mixed superpixels are selected as key superpixels. Specifically, the texture complexity of the input image is calculated by a new method. Then a new superpixels generation method called neighbourhood information simple linear iterative clustering (NISLIC) is used to over-segment the image. For images with high texture complexity, the complex areas are first separated and key superpixels are selected according to certain rules. For images with low texture complexity, key superpixels are directly extracted. Finally, the superpixels are pre-segmented by fuzzy clustering based on the extracted features and the key superpixels are processed at the pixel level to obtain the final result. The effectiveness of this method has been successfully verified on several kinds of images. Comparing with the state-of-the-art algorithms, the proposed algorithm can more effectively distinguish different landforms and suppress the influence of noise, so as to achieve semantic segmentation of SAR images.


2020 ◽  
Vol 8 (1) ◽  
pp. 84-90
Author(s):  
R. Lalchhanhima ◽  
◽  
Debdatta Kandar ◽  
R. Chawngsangpuii ◽  
Vanlalmuansangi Khenglawt ◽  
...  

Fuzzy C-Means is an unsupervised clustering algorithm for the automatic clustering of data. Synthetic Aperture Radar Image Segmentation has been a challenging task because of the presence of speckle noise. Therefore the segmentation process can not directly rely on the intensity information alone but must consider several derived features in order to get satisfactory segmentation results. In this paper, it is attempted to use the fuzzy nature of classification for the purpose of unsupervised region segmentation in which FCM is employed. Different features are obtained by filtering of the image by using different spatial filters and are selected for segmentation criteria. The segmentation performance is determined by the accuracy compared with a different state of the art techniques proposed recently.


Sign in / Sign up

Export Citation Format

Share Document