scholarly journals Weakly Supervised Change Detection Based on Edge Mapping and SDAE Network in High-Resolution Remote Sensing Images

2020 ◽  
Vol 12 (23) ◽  
pp. 3907
Author(s):  
Ning Lu ◽  
Can Chen ◽  
Wenbo Shi ◽  
Junwei Zhang ◽  
Jianfeng Ma

Change detection for high-resolution remote sensing images is more and more widespread in the application of monitoring the Earth’s surface. However, on the one hand, the ground truth could facilitate the distinction between changed and unchanged areas, but it is hard to acquire them. On the other hand, due to the complexity of remote sensing images, it is difficult to extract features of difference, let alone the construction of the classification model that performs change detection based on the features of difference in each pixel pair. Aiming at these challenges, this paper proposes a weakly supervised change detection method based on edge mapping and Stacked Denoising Auto-Encoders (SDAE) network called EM-SDAE. We analyze the difference in edge maps of bi-temporal remote sensing images to acquire part of the ground truth at a relatively low cost. Moreover, we design a neural network based on SDAE with a deep structure, which extracts the features of difference so as to efficiently classify changed and unchanged regions after being trained with the ground truth. In our experiments, three real sets of high-resolution remote sensing images are employed to validate the high efficiency of our proposed method. The results show that accuracy can even reach up to 91.18% with our method. In particular, compared with the state-of-the-art work (e.g., IR-MAD, PCA-k-means, CaffeNet, USFA, and DSFA), it improves the Kappa coefficient by 27.19% on average.

2021 ◽  
Vol 13 (22) ◽  
pp. 4528
Author(s):  
Xin Yang ◽  
Lei Hu ◽  
Yongmei Zhang ◽  
Yunqing Li

Remote sensing image change detection (CD) is an important task in remote sensing image analysis and is essential for an accurate understanding of changes in the Earth’s surface. The technology of deep learning (DL) is becoming increasingly popular in solving CD tasks for remote sensing images. Most existing CD methods based on DL tend to use ordinary convolutional blocks to extract and compare remote sensing image features, which cannot fully extract the rich features of high-resolution (HR) remote sensing images. In addition, most of the existing methods lack robustness to pseudochange information processing. To overcome the above problems, in this article, we propose a new method, namely MRA-SNet, for CD in remote sensing images. Utilizing the UNet network as the basic network, the method uses the Siamese network to extract the features of bitemporal images in the encoder separately and perform the difference connection to better generate difference maps. Meanwhile, we replace the ordinary convolution blocks with Multi-Res blocks to extract spatial and spectral features of different scales in remote sensing images. Residual connections are used to extract additional detailed features. To better highlight the change region features and suppress the irrelevant region features, we introduced the Attention Gates module before the skip connection between the encoder and the decoder. Experimental results on a public dataset of remote sensing image CD show that our proposed method outperforms other state-of-the-art (SOTA) CD methods in terms of evaluation metrics and performance.


2020 ◽  
Vol 166 ◽  
pp. 183-200 ◽  
Author(s):  
Chenxiao Zhang ◽  
Peng Yue ◽  
Deodato Tapete ◽  
Liangcun Jiang ◽  
Boyi Shangguan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document