scholarly journals Victoria Land, Antarctica: An Improved Geodynamic Interpretation Based on the Strain Rate Field of the Current Crustal Motion and Moho Depth Model

2020 ◽  
Vol 13 (1) ◽  
pp. 87
Author(s):  
Antonio Zanutta ◽  
Monia Negusini ◽  
Luca Vittuari ◽  
Leonardo Martelli ◽  
Paola Cianfarra ◽  
...  

In Antarctica, the severe climatic conditions and the thick ice sheet that covers the largest and most internal part of the continent make it particularly difficult to systematically carry out geophysical and geodetic observations on a continental scale. It prevents the comprehensive understanding of both the onshore and offshore geology as well as the relationship between the inner part of East Antarctica (EA) and the coastal sector of Victoria Land (VL). With the aim to reduce this gap, in this paper multiple geophysical dataset collected since the 1980s in Antarctica by Programma Nazionale di Ricerche in Antartide (PNRA) were integrated with geodetic observations. In particular, the analyzed data includes: (i) Geodetic time series from Trans Antarctic Mountains DEFormation (TAMDEF), and Victoria Land Network for DEFormation control (VLNDEF) GNSS stations installed in Victoria Land; (ii) the integration of on-shore (ground points data and airborne) gravity measurements in Victoria Land and marine gravity surveys performed in the Ross Sea and the narrow strip of Southern Ocean facing the coasts of northern Victoria Land. Gravity data modelling has improved the knowledge of the Moho depth of VL and surrounding the offshore areas. By the integration of geodetic and gravitational (or gravity) potential results it was possible to better constrain/identify four geodynamic blocks characterized by homogeneous geophysical signature: the Southern Ocean to the N, the Ross Sea to the E, the Wilkes Basin to the W, and VL in between. The last block is characterized by a small but significant clockwise rotation relative to East Antarctica. The presence of a N-S to NNW-SSE 1-km step in the Moho in correspondence of the Rennick Geodynamic Belt confirms the existence of this crustal scale discontinuity, possibly representing the tectonic boundary between East Antarctica and the northern part of VL block, as previously proposed by some geological studies.

1996 ◽  
Vol 8 (1) ◽  
pp. 61-72 ◽  
Author(s):  
Elena Belluso ◽  
Roberto Lanza

The Tertiary stocks (Meander Intrusives) cropping out along the coasts of the Ross Sea were sampled for a palaeomagnetic study during the sixth Italian expedition to northern Victoria Land. Laboratory investigations concerned magnetic mineralogy and remanent magnetization. Minerals of the magnetiteulvöspinel series occur in the rocks from all stocks, with low-Ti titanomagnetite usually prevalent. Haematite and goethite occur in small amounts as alteration products. Large secondary components commonly screen the characteristic remanent magnetization and were removed by thermal or AF demagnetization at temperatures or peak-fields higher than 360°C and 20 mT respectively. A total of 10 VGPs were obtained from radiometrically dated rocks (42–22 Ma); the averaged position (69°S, 334°E; α95=9.9°) is the first middle Tertiary palaeomagnetic pole for East Antarctica, and gives evidence for a reversal in the course of the APW path. This evidence is not substantially altered by a supposed tilt-correction consistent with geophysical and geological models for the uplift of the Transantarctic Mountains. No definite conclusion about relative movements between East Antarctica and the Antarctic Peninsula can be drawn from the existing palaeomagnetic data.


Polar Biology ◽  
2014 ◽  
Vol 37 (4) ◽  
pp. 519-529 ◽  
Author(s):  
Magdalena Błażewicz-Paszkowycz ◽  
Jacek Siciński

2017 ◽  
Author(s):  
Ariadna Salabarnada ◽  
Carlota Escutia ◽  
Ursula Röhl ◽  
C. Hans Nelson ◽  
Robert McKay ◽  
...  

Abstract. The late Oligocene experienced atmospheric concentrations of CO2 between 400 and 750 ppm, which are within the IPCC projections for this century, assuming unabated CO2 emissions. However, Antarctic ice sheet and Southern Ocean paleoceanographic configurations during the late Oligocene are not well resolved, but are important to understand the influence of high-latitude Southern Hemisphere feedbacks on global climate under such CO2 scenarios. Here, we present late Oligocene (26–25 Ma) ice sheet and paleoceanographic reconstructions recorded in sediments recovered by IODP Site U1356, offshore of the Wilkes Land margin in East Antarctica. Our study, based on a combination of sediment facies analysis, physical properties, and geochemical parameters, shows that glacial and interglacial sediments are continuously reworked by bottom-currents, with maximum velocities occurring during the interglacial periods. Glacial sediments record poorly ventilated, low-oxygenation bottom water conditions, interpreted to represent a northward shift of westerly winds and surface oceanic fronts. During interglacial times, more oxygenated and ventilated conditions prevailed, which suggests enhanced mixing of the water masses with enhanced current velocities. Micritic limestone intervals within some of the interglacial facies represent warmer paleoclimatic conditions when less corrosive warmer northern component water (e.g. North Atlantic sourced deep water) had a greater influence on the site. The lack of iceberg rafted debris (IRD) throughout the studied interval contrasts with early Oligocene and post-Oligocene sections from Site U1356 and with late Oligocene strata from the Ross Sea (CRP and DSDP 270), which contain IRD and evidence for coastal sea ice and glaciers. These observations, supported by elevated paleotemperatures and the absence of sea-ice, suggest that between 26 and 25 Ma reduced glaciers or ice caps occupied the terrestrial lowlands of the Wilkes Land margin. Unlike today, the continental shelf was not over-deepened, and thus marine-based ice sheet expansion was likely limited to coastal regions. Combined, these data suggest that ice sheets in the Wilkes Subglacial Basin were largely land-based, and therefore retreated as a consequence of surface melt during late Oligocene, rather than direct ocean forcing and marine ice sheet instability processes as it did in younger past warm intervals. Spectral analysis on late Oligocene sediments from the eastern Wilkes Land margin show that the glacial-interglacial cyclicity and resulting displacements of the Southern Ocean frontal systems between 26–25 Ma were forced by obliquity.


1999 ◽  
Vol 42 (2) ◽  
Author(s):  
M. Chiappini ◽  
F. Ferraccioli ◽  
E. Bozzo ◽  
D. Damaske ◽  
J. C. Behrendt

INTRAMAP (INtegrated Transantarctic Mountains and Ross Sea Area Magnetic Anomaly Project) is an international effort to merge the magnetic data acquired throughout the "Ross Sea Antarctic Sector" (south of 60°S between 135°-255°E) including the Transantarctic Mountains (TAM), the Ross Sea, Marie Byrd Land, and the Pacific coast, and also to begin the compilation efforts for new data over the Wilkes Basin. This project is a component of the continental scale Antarctic Digital Magnetic Anomaly Project (ADMAP). The first stage of INTRAMAP addresses the analysis and merging of GITARA (1991-1994) and GANOVEX (1984) aeromagnetic surveys together with ground magnetic data (1984-1989). The combined data sets cover an area of approximately 30 km2 over Victoria Land and adjacent Ross Sea. Map and profile gridding were implemented to integrate the data sets. These approaches are studied for improving existing strategies to adopt for the whole magnetic compilation effort. The final microlevelled grid that we produce is a new tool for regional interpretation of the main tectonic and geologic features of this sector of Antarctica.


2010 ◽  
Vol 25 (8) ◽  
pp. 1327-1337 ◽  
Author(s):  
Barbara Delmonte ◽  
Carlo Baroni ◽  
Per S. Andersson ◽  
Hans Schoberg ◽  
Margareta Hansson ◽  
...  

2004 ◽  
Vol 39 ◽  
pp. 495-500 ◽  
Author(s):  
Mauro Guglielmin ◽  
Hugh M. French

AbstractThis progress report classifies the different types of ground-ice bodies that occur in the Northern Foothills, northern Victoria Land, Antarctica. Oxygen isotope variations are presented, but interpretation is kept to a minimum pending further investigations. Surface ice, as distinct from moving glacier ice, occurs in the form of widespread buried (‘dead’) glacier ice lying beneath ablation (sublimation) till, together with perennial lake ice, snow banks and icing-blister ice.’Dry’ permafrost is uncommon, and interstitial ice is usually present at the base of the active layer and in the near-surface permafrost. This probably reflects the supply of moisture from the Ross Sea and limited sublimation under today’s climate. Intrusive ice occurs as layers within perennial lake-ice covers and gives rise to small icing blisters. Small ice wedges found beneath the furrows of high-centered polygons appear to agree with the model of sublimation-till development proposed by Marchant and others (2002).


1999 ◽  
Vol 11 (2) ◽  
pp. 261-264 ◽  
Author(s):  
Filippo Mangani ◽  
Michela Maione ◽  
Luciano Lattanzi

CCl3F (or CFC-11) and CCl2F2 (or CFC-12) were determined in air samples collected, during subsequent summer Antarctic campaigns, in different sampling sites in the Ross Sea Region. The samples were analysed by GC-ECD after enrichment. Data obtained since 1988–89 were plotted to observe the trend of CFCs atmospheric concentration levels. A decrease in the rate of increase of CFC-12 concentration was observed, whilst the concentration of CFC-11 was actually seen to be decreasing.


2021 ◽  
Vol 9 (1) ◽  
pp. 84-107
Author(s):  
Karen N. Scott

Abstract In 2016, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) designated the largest marine protected area (MPA) in the Ross Sea. Hailed as both a precedent and a prototype for MPAs in both Antarctica and in areas beyond national jurisdiction more generally, it is nevertheless proving challenging to implement. Moreover, further MPAs have yet to be designated in the region although a number are under negotiation. This article will evaluate the contribution made by CCAMLR to the implementation of SDG 14.5 (the conservation of at least 20 per cent of marine and coastal areas by 2020), its relationship to area-based protection under the 1991 Environmental Protocol, and highlight the challenges of establishing MPAs beyond the jurisdiction of states.


Sign in / Sign up

Export Citation Format

Share Document