scholarly journals The Spatio-Temporal Variability of Frost Blisters in a Perennial Frozen Lake along the Antarctic Coast as Indicator of the Groundwater Supply

2021 ◽  
Vol 13 (3) ◽  
pp. 435
Author(s):  
Stefano Ponti ◽  
Riccardo Scipinotti ◽  
Samuele Pierattini ◽  
Mauro Guglielmin

Remote sensing, and unmanned aerial vehicles (UAVs) in particular, can be a valid tool for assessing the dynamics of cryotic features as frost blisters and to monitor the surface changes and the sublimation rates on perennially frozen lakes that host important ecosystems. In this paper, through the use of these remote sensing techniques, we aim to understand the type of groundwater supply of an Antarctic perennial frozen lake that encompasses two frost blisters (M1 and M2) through the temporal analysis of the features’ elevation changes (frost blisters and lake ice level). The frozen lake is located at Boulder Clay (northern Victoria Land, Antarctica). We relied on several photogrammetric models, past satellite images and ground pictures to conduct differencing of digital elevation models, areal variations and pixel counting. In addition, in situ measurements of the ice sublimation or snow accumulation were carried out. The two frost blisters showed different elevation trends with M1 higher in the past (1996–2004) than recently (2014–2019), while M2 showed an opposite trend, similarly to the ice level. Indeed, the linear regression between M2 elevation changes and the ice level variation was statistically significant, as well as with the annual thawing degree days, while M1 did not show significant results. From these results we can infer that the groundwater supply of M1 can be related to a sublake open talik (hydraulic system) as confirmed also by pressurized brines found below M1, during a drilling in summer 2019. For M2 the groundwater flow is still not completely clear although the hydrostatic system seems the easiest explanation as well as for the uplift of the lake ice.

Author(s):  
Akinola Adesuji Komolafe ◽  
Paul Ayodeji Apalara ◽  
Matthew Olomolatan Ibitoye ◽  
Abiodun Olufemi Adebola ◽  
Idowu Ezekiel Olorunfemi ◽  
...  

AGROFOR ◽  
2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Seyed Hamidreza SADEGHI ◽  
Fahimeh MIRCHOOLI ◽  
Abdulvahed KHALEDI DARVISHAN

Land degradation is the major issue which affect watershed sustainability and following social, economic and environmental of livelihood people. So, early detection of land degradation is necessary for policy-makers to make appropriate decision. In this way, remote sensing method is a candidate choice for assessments and monitoring. In this study, land degradation was assessed using Rain-Use Efficiency (RUE) in the Shazand Watershed, Iran in 1986, 1998, 2008 and 2016. Thus, annual rainfall was calculated using inverse distance weight (IDW), net primary productivity (NPP) were calculated using Landsat images. The results indicated that RUE had increasing and then decreasing trends which were 10.66, 33.77, 20.03 and 9.47 kg C ha-1 yr-1. The results also illustrate that the mean value of RUE in different land uses varied between the irrigated land and orchard that had the highest value and outcrop dominant areas and bareland had the lowest value of RUE among land use categories. It is also established that spatio-temporal analysis of RUE can provide valuable information about the trend of watershed’s sustainability over years.


Sign in / Sign up

Export Citation Format

Share Document