hydrostatic system
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 5)

H-INDEX

7
(FIVE YEARS 1)

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1105
Author(s):  
Jianhua Zhao ◽  
Lanchun Xing ◽  
Sheng Li ◽  
Weidong Yan ◽  
Dianrong Gao ◽  
...  

The magnetic-liquid double suspension bearing (MLDSB) is a new type of suspension bearing, with electromagnetic suspension as the main part and hydrostatic supports as the auxiliary part. It can greatly improve the bearing capacity and stiffness of rotor-bearing systems and is suitable for a medium speed, heavy load, and frequent starting occasions. Compared with the active electromagnetic bearing system, the traditional protective bearing device is replaced by the hydrostatic system in MLDSB, and the impact-rubbing phenomenon can be restrained and buffered. Thus, the probability and degree of friction and wear between the rotor and the magnetic pole are reduced drastically when the electromagnetic system fails. In order to explore the difference in the dynamic behavior law of the impact-rubbing phenomenon between the traditional protection device and hydrostatic system, the dynamic equations of the rotor impact-rubbing in three kinds of protection devices (fixed ring/deep groove ball bearing/hydrostatic system) under electromagnetic failure mode are established, and the axial trajectory and motion law of the rotor are numerically simulated. Finally, the dynamic behavior characteristics of the rotor are compared and analyzed. The results show that: Among the three kinds of protection devices (fixed ring/deep groove ball bearing/hydrostatic system), the hydrostatic system has the least influence on bouncing time, impact-rubbing force, and impact-rubbing degree, and the maximum impact-rubbing force of MLDSB is greatly reduced. Therefore, the protective bear is not required to be installed in the MLDSB. This study provides the basis for the theory of the “gap impact-rubbing” of MLDSB under electromagnetic failure, and helps to identify electromagnetic faults.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
U. A. Nekliudova ◽  
T. F. Schwaha ◽  
O. N. Kotenko ◽  
D. Gruber ◽  
N. Cyran ◽  
...  

Abstract Background Placentation has evolved multiple times among both chordates and invertebrates. Although they are structurally less complex, invertebrate placentae are much more diverse in their origin, development and position. Aquatic colonial suspension-feeders from the phylum Bryozoa acquired placental analogues multiple times, representing an outstanding example of their structural diversity and evolution. Among them, the clade Cyclostomata is the only one in which placentation is associated with viviparity and polyembryony—a unique combination not present in any other invertebrate group. Results The histological and ultrastructural study of the sexual polymorphic zooids (gonozooids) in two cyclostome species, Crisia eburnea and Crisiella producta, revealed embryos embedded in a placental analogue (nutritive tissue) with a unique structure—comprising coenocytes and solitary cells—previously unknown in animals. Coenocytes originate via nuclear multiplication and cytoplasmic growth among the cells surrounding the early embryo. This process also affects cells of the membranous sac, which initially serves as a hydrostatic system but later becomes main part of the placenta. The nutritive tissue is both highly dynamic, permanently rearranging its structure, and highly integrated with its coenocytic ‘elements’ being interconnected via cytoplasmic bridges and various cell contacts. This tissue shows evidence of both nutrient synthesis and transport (bidirectional transcytosis), supporting the enclosed multiple progeny. Growing primary embryo produces secondary embryos (via fission) that develop into larvae; both the secondary embyos and larvae show signs of endocytosis. Interzooidal communication pores are occupied by 1‒2 specialized pore-cells probably involved in the transport of nutrients between zooids. Conclusions Cyclostome nutritive tissue is currently the only known example of a coenocytic placental analogue, although syncytial ‘elements’ could potentially be formed in them too. Structurally and functionally (but not developmentally) the nutritive tissue can be compared with the syncytial placental analogues of certain invertebrates and chordates. Evolution of the cyclostome placenta, involving transformation of the hydrostatic apparatus (membranous sac) and change of its function to embryonic nourishment, is an example of exaptation that is rather widespread among matrotrophic bryozoans. We speculate that the acquisition of a highly advanced placenta providing massive nourishment might support the evolution of polyembryony in cyclostomes. In turn, massive and continuous embryonic production led to the evolution of enlarged incubating polymorphic gonozooids hosting multiple progeny.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jianhua Zhao ◽  
Xiaochen Wu ◽  
Fang Han ◽  
Xuchao Ma ◽  
Weidong Yan ◽  
...  

Magnetic liquid double suspension bearing (MLDSB) includes electromagnetic system and hydrostatic system, and the bearing capacity and stiffness can be greatly improved. It is very suitable for the occasions of medium speed, heavy load, and starting frequently. Due to the mutual coupling and interaction between electromagnetic system and hydrostatic system, the probability and degree of static bifurcation are greatly increased and the operation stability is reduced. And flow of bearing cavity, coil current, oil film thickness, and galvanized layer thickness are the key parameters to ensure operation safe and stable, which has an important influence on the static bifurcation behavior. So this article intends to establish the coupling model of MLDSB to reveal the range of parameter combination in the case of static bifurcation. The influences of different parameter groups on the singularity characteristics, phase trajectory, x − t curves, and suction basin of the single DOF bearing system are analyzed. The result shows that there are nonzero singularities and static bifurcation occurs when ε 2 > 0 or δ 2 > 0 . As the flow of bearing cavity, coil current, oil film thickness, and galvanized layer thickness changes in turn, the singularities will convert between stable focus, unstable focus, stable node, and saddle point, and then the stable limit cycle may be generated. The attractiveness of singularity will change greatly with the flow of the bearing cavity and coil current changes slightly in the case of small current or large flow. The minimal change of galvanized layer thickness will lead to the fundamental change of the final stable equilibrium point of the rotor, while the final equilibrium point is slightly affected by the oil film thickness. This study can provide a reference for the supporting stability of MLDSB.


2021 ◽  
Vol 13 (3) ◽  
pp. 435
Author(s):  
Stefano Ponti ◽  
Riccardo Scipinotti ◽  
Samuele Pierattini ◽  
Mauro Guglielmin

Remote sensing, and unmanned aerial vehicles (UAVs) in particular, can be a valid tool for assessing the dynamics of cryotic features as frost blisters and to monitor the surface changes and the sublimation rates on perennially frozen lakes that host important ecosystems. In this paper, through the use of these remote sensing techniques, we aim to understand the type of groundwater supply of an Antarctic perennial frozen lake that encompasses two frost blisters (M1 and M2) through the temporal analysis of the features’ elevation changes (frost blisters and lake ice level). The frozen lake is located at Boulder Clay (northern Victoria Land, Antarctica). We relied on several photogrammetric models, past satellite images and ground pictures to conduct differencing of digital elevation models, areal variations and pixel counting. In addition, in situ measurements of the ice sublimation or snow accumulation were carried out. The two frost blisters showed different elevation trends with M1 higher in the past (1996–2004) than recently (2014–2019), while M2 showed an opposite trend, similarly to the ice level. Indeed, the linear regression between M2 elevation changes and the ice level variation was statistically significant, as well as with the annual thawing degree days, while M1 did not show significant results. From these results we can infer that the groundwater supply of M1 can be related to a sublake open talik (hydraulic system) as confirmed also by pressurized brines found below M1, during a drilling in summer 2019. For M2 the groundwater flow is still not completely clear although the hydrostatic system seems the easiest explanation as well as for the uplift of the lake ice.


2019 ◽  
Vol 19 (4) ◽  
pp. 1104-1115 ◽  
Author(s):  
Łukasz Stawiński ◽  
Andrzej Kosucki ◽  
Adrian Morawiec ◽  
Małgorzata Sikora

2018 ◽  
Vol 19 (6) ◽  
pp. 871-875
Author(s):  
Karol Kończalski ◽  
Piotr Krogul ◽  
Mirosław Przybysz ◽  
Rafał Typiak

The article discusses the requirements for the hydrostatic system of turning unmanned mobile robots in the context of using the system to follow the guide. The requirements set in this regard by the army were analyzed. Exchange car monitoring systems for cars. The control system of the unmanned ground platform and the results of tests on the intensity of the platform's turn compared to a typical construction machine are discussed.


2018 ◽  
Vol 28 (1) ◽  
pp. 183-188
Author(s):  
A.К Sandler ◽  
◽  
E.V. Drozd ◽  
◽  
◽  
...  
Keyword(s):  

Author(s):  
Ajit Kumar ◽  
K Dasgupta ◽  
J Das

The effects of the decay characteristics of a hydraulic accumulator on the responses of the hydrostatic drive system used in mining vehicles are studied in this article. The system considered for the analysis basically consists of a hydraulic pump, hydro-motor, accumulator and a loading circuit. The studies have been carried out with respect to two different sizes of accumulators. The system model has been made in MATLAB/Simulink® environment. The simulation test results are obtained with respect to the hydro-motor speeds and the system pressure at different resistive loads and capacities of the accumulator and they are verified with the experimental test data. Using the validated model, the parametric studies are also made on the speed responses of the hydrostatic drive for different precharge pressures of the accumulator and inertial load on the motor shaft. The studies made in this article may be useful for the selection of proper capacity of accumulators incorporated in the hydrostatic drive system in mining vehicles.


2015 ◽  
Vol 17 (3) ◽  
pp. 338-344 ◽  
Author(s):  
Klaudiusz Klarecki ◽  
Dominik Rabsztyn ◽  
Mariusz Piotr Hetmańczyk
Keyword(s):  

2014 ◽  
Vol 664 ◽  
pp. 379-383 ◽  
Author(s):  
Ângelo R. Araújo ◽  
Nuno Peixinho ◽  
A.C. Marques Pinho ◽  
J.C.P. Claro

The Intervertebral Disc (IVD) is subjected to several types of loading during daily routine events. However, the overloading on this structure induces higher Intradiscal Pressure (IDP), which could cause severe damage on its structure. This study describes a new approach to that allows monitorize and pressurize nuclear region of the IVD, with a cartilaginous endplate access, by the insertion of an external fluid, while a Motion Segment (MS-assembly composed by vertebra-disc-vertebra) is compressed at a physiological load. This methodology includes the use of a pneumatic structure that applies a certain pressure on the hydrostatic system, forcing a fluid to enter into the MS through a screw, with a drilled hollow along its entire length. Preliminary results indicated that this methodology presents high potential to efficiently pressurize the IVD, providing a useful tool to better understand the response of this structure under pressure.


Sign in / Sign up

Export Citation Format

Share Document