scholarly journals Monitoring the Coastal Changes of the Po River Delta (Northern Italy) since 1911 Using Archival Cartography, Multi-Temporal Aerial Photogrammetry and LiDAR Data: Implications for Coastline Changes in 2100 A.D.

2021 ◽  
Vol 13 (3) ◽  
pp. 529
Author(s):  
Massimo Fabris

Interaction between land subsidence and sea level rise (SLR) increases the hazard in coastal areas, mainly for deltas, characterized by flat topography and with great social, ecological, and economic value. Coastal areas need continuous monitoring as a support for human intervention to reduce the hazard. Po River Delta (PRD, northern Italy) in the past was affected by high values of artificial land subsidence: even if at low rates, anthropogenic settlements are currently still in progress and produce an increase of hydraulic risk due to the loss of surface elevation both of ground and levees. Many authors have provided scenarios for the next decades with increased flooding in densely populated areas. In this work, a contribution to the understanding future scenarios based on the morphological changes that occurred in the last century on the PRD coastal area is provided: planimetric variations are reconstructed using two archival cartographies (1911 and 1924), 12 multi-temporal high-resolution aerial photogrammetric surveys (1933, 1944, 1949, 1955, 1962, 1969, 1977, 1983, 1990, 1999, 2008, and 2014), and four LiDAR (light detection and ranging) datasets (acquired in 2006, 2009, 2012, and 2018): obtained results, in terms of emerged surfaces variations, are linked to the available land subsidence rates (provided by leveling, GPS—global positioning system, and SAR—synthetic aperture radar data) and to the expected SLR values, to perform scenarios of the area by 2100: results of this work will be useful to mitigate the hazard by increasing defense systems and preventing the risk of widespread flooding.

2021 ◽  
Vol 13 (8) ◽  
pp. 1488
Author(s):  
Nicola Cenni ◽  
Simone Fiaschi ◽  
Massimo Fabris

The Po River Delta (PRD, Northern Italy) has been historically affected by land subsidence due to natural processes and human activities, with strong impacts on the stability of the natural ecosystems and significant socio-economic consequences. This paper is aimed to highlight the spatial and temporal evolution of the land subsidence in the PRD area analyzing the geodetic observations acquired in the last decade. The analysis performed using a moving window approach on Continuous Global Navigation Satellite System (CGNSS) time-series indicates that the velocities, in the order of 6 mm/year, are not affected by significant changes in the analyzed period. Furthermore, the use of non-permanent sites belonging to a new GNSS network (measured in 2016 and 2018) integrated with InSAR data (from 2014 to 2017) allowed us to improve the spatial coverage of data points in the PRD area. The results suggest that the land subsidence velocities in the easternmost part of the area of interest are characterized by values greater than the ones located in the western sectors. In particular, the sites located on the sandy beach ridge in the western sector of the study area are characterized by values greater than −5 mm/year, while rates of about −10 mm/year or lower have been observed at the eastern sites located in the Po river mouths. The morphological analysis indicates that the land subsidence observed in the PRD area is mainly due to the compaction of the shallow layers characterized by organic-rich clay and fresh-water peat.


2021 ◽  
Vol 13 (4) ◽  
pp. 604
Author(s):  
Donato Amitrano ◽  
Gerardo Di Martino ◽  
Raffaella Guida ◽  
Pasquale Iervolino ◽  
Antonio Iodice ◽  
...  

Microwave remote sensing has widely demonstrated its potential in the continuous monitoring of our rapidly changing planet. This review provides an overview of state-of-the-art methodologies for multi-temporal synthetic aperture radar change detection and its applications to biosphere and hydrosphere monitoring, with special focus on topics like forestry, water resources management in semi-arid environments and floods. The analyzed literature is categorized on the base of the approach adopted and the data exploited and discussed in light of the downstream remote sensing market. The purpose is to highlight the main issues and limitations preventing the diffusion of synthetic aperture radar data in both industrial and multidisciplinary research contexts and the possible solutions for boosting their usage among end-users.


2020 ◽  
Vol 12 (2) ◽  
pp. 299 ◽  
Author(s):  
Yanan Du ◽  
Guangcai Feng ◽  
Lin Liu ◽  
Haiqiang Fu ◽  
Xing Peng ◽  
...  

Coastal areas are usually densely populated, economically developed, ecologically dense, and subject to a phenomenon that is becoming increasingly serious, land subsidence. Land subsidence can accelerate the increase in relative sea level, lead to a series of potential hazards, and threaten the stability of the ecological environment and human lives. In this paper, we adopted two commonly used multi-temporal interferometric synthetic aperture radar (MTInSAR) techniques, Small baseline subset (SBAS) and Temporarily coherent point (TCP) InSAR, to monitor the land subsidence along the entire coastline of Guangdong Province. The long-wavelength L-band ALOS/PALSAR-1 dataset collected from 2007 to 2011 is used to generate the average deformation velocity and deformation time series. Linear subsidence rates over 150 mm/yr are observed in the Chaoshan Plain. The spatiotemporal characteristics are analyzed and then compared with land use and geology to infer potential causes of the land subsidence. The results show that (1) subsidence with notable rates (>20 mm/yr) mainly occurs in areas of aquaculture, followed by urban, agricultural, and forest areas, with percentages of 40.8%, 37.1%, 21.5%, and 0.6%, respectively; (2) subsidence is mainly concentrated in the compressible Holocene deposits, and clearly associated with the thickness of the deposits; and (3) groundwater exploitation for aquaculture and agricultural use outside city areas is probably the main cause of subsidence along these coastal areas.


1985 ◽  
Vol 22 (1) ◽  
pp. 54-58 ◽  
Author(s):  
L Del Senno ◽  
M Pirastu ◽  
R Barbieri ◽  
F Bernardi ◽  
D Buzzoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document