scholarly journals Long-Term Dynamics of Different Surface Water Body Types and Their Possible Driving Factors in China

2021 ◽  
Vol 13 (6) ◽  
pp. 1154
Author(s):  
Bowei Yu ◽  
Baoshan Cui ◽  
Yongge Zang ◽  
Chunsheng Wu ◽  
Zhonghe Zhao ◽  
...  

Various surface water bodies, such as rivers, lakes and reservoirs, provide water and essential services to human society. However, the long-term spatiotemporal dynamics of different types of surface water bodies and their possible driving factors over large areas remain very limited. Here, we used unprecedented surface water data layers derived from all available Landsat images and further developed two databases on China’s lakes and reservoirs larger than 1 km2 to document and understand the characteristics of changes in different water body types during 2000 to 2019 in China. Our results show that China is dominated by permanent water bodies. The areas of permanent and seasonal water bodies in China increased by 16,631.02 km2 (16.72%) and 16,994.95 km2 (25.14%), respectively, between 2000 and 2019, with permanent and seasonal water bodies exhibiting divergent spatial variations. Lakes and artificial reservoirs larger than 1 km2, which collectively represent a significant proportion of the permanent water bodies in China, displayed net increases of 6884.52 km2 (10.71%) and 4075.13 km2 (36.10%), respectively, from 2000 to 2019; these increases accounted for 41.40% and 24.50%, respectively, of the total permanent water body increment. The expanding lakes were mainly distributed on the Tibetan Plateau, whereas the rapidly growing reservoirs were mainly located on the Northeast Plain and Eastern Plain. Statistical analyses indicated that artificial reservoirs were an important factor controlling both permanent and seasonal water body changes in most of provinces. Climate factors, such as precipitation and temperature, were the main influencing factors affecting the changes in different water bodies in the sparsely populated Tibetan Plateau.

Author(s):  
V.K. Khilchevskyi

Over the past five years (2014-2021), there have been significant changes in regulatory methods for assessing water quality for various purposes, which is due to Ukraine’s course towards European integration. An important feature was the cancellation of the acts of sanitary legislation of the Ukrainian SSR and the USSR (from 01.01.2017), which were applied in Ukraine for a long time (order of the Cabinet of Ministers of Ukraine of 2016). The Law of Ukraine “On Amendments to Certain Legislative Acts of Ukraine Concerning the Implementation of Integrated Approaches in Water Resources Management Based on the Basin Principle” (2016) amended the Water Code of Ukraine regarding hydrographic zoning and water monitoring in accordance with the provisions of the EU Water Framework Directive. In 2018, by a resolution of the Cabinet of Ministers of Ukraine, the “Procedure for the implementation of state monitoring of waters” was approved. In 2019, the Ministry of Natural Resources of Ukraine approved the normative “Methodology for assigning a surface water array to one of the classes of the ecological and chemical states of a surface water array, as well as assigning an artificial or significantly altered surface water array to one of the classes of the ecological potential of an artificial or significantly altered surface water array” The objects of state monitoring of waters are land and ground water bodies and sea waters. Surface water body – a specially defined surface water body or part of it. The body of surface waters can be classified into one of five categories: 1) rivers; 2) lakes; 3) transitional waters; 4) coastal waters; 5) artificial or substantially altered surface water bodies. The program of state monitoring of waters provides for control over four groups of indicators: 1) biological; 2) physical and chemical; 3) chemical; 4) hydromorphological. Based on the data and information obtained as a result of the state monitoring of the waters of surface and groundwater bodies, the ecological and chemical state of the surface water bodies, the ecological potential of artificial or significantly altered surface water bodies, the quantitative and chemical state of the groundwater bodies are determined, taking into account which river basin management plans and assess the level of achievement of environmental objectives. The purpose of this study is to highlight the approaches that have developed at the present stage to the regulation of water quality for various purposes, the main of which are: environmental; hygienic (household and drinking and cultural and household or recreational water use), fishery. If, when assessing the quality of water for environmental purposes, a deviation from the maximum permissible concentrations (MPC) was made, then in other areas of water use, the MPC standards remain relevant. The importance of this study also lies in the need to convey generalized information to a wide range of authors who are interested in water quality issues.


2019 ◽  
Vol 11 (19) ◽  
pp. 2213 ◽  
Author(s):  
Yue Deng ◽  
Weiguo Jiang ◽  
Zhenghong Tang ◽  
Ziyan Ling ◽  
Zhifeng Wu

The spatiotemporal changes of open-surface water bodies in the Yangtze River Basin (YRB) have profound influences on sustainable economic development, and are also closely relevant to water scarcity in China. However, long-term changes of open-surface water bodies in the YRB have remained poorly characterized. Taking advantage of the Google Earth Engine (GEE) cloud platform, this study processed 75,593 scenes of Landsat images to investigate the long-term changes of open-surface water bodies in the YRB from 1984 to 2018. In this study, we adopted the percentile-based image composite method to collect training samples and proposed a multiple index water detection rule (MIWDR) to quickly extract the open-surface water bodies. The results indicated that (1) the MIWDR is suitable for the long-term and large-scale Landsat water bodies mapping, especially in the urban regions. (2) The areas of permanent water bodies and seasonal water bodies were 29,076.70 km2 and 21,526.24 km2, accounting for 57.46% and 42.54% of the total open-surface water bodies in the YRB, respectively. (3) The permanent water bodies in the YRB increased along with the decreases in the seasonal water bodies from 1984 to 2018. In general, the total open-surface surface water bodies in the YRB experienced an increasing trend, with an obvious spatial heterogeneity. (4) The changes of open-surface water bodies were associated with the climate changes and intense human activities in the YRB, however, the influences varied among different regions and need to be further investigated in the future.


Author(s):  

Analysis of the Russian legislation novels aimed at implementation of norms of impact upon environment at the best available techniques level applied to surface water bodies has been presented. It is noted that acting regulations do not completely secure realization of the combined approach to water resources management. In particular, there are no mechanisms to create incentives for further reduction of pollutants discharge to water bodies in case when the best available techniques do not secure attainment of water quality norms or the water body status objectives, when surface water bodies water quality norms accounting their natural and anthropogenic features stipulated by the acting Russian legislation are not yet developed. Proposals on accounting of objectives concerning the surface water body status in the process of regulating impacts upon it on the basis of technological norms and norms of permissible discharge have been made: to calculate surface water bodies water quality objective with taking into account natural and unavoidable anthropogenic factors according the proposed algorithm; when calculating norms of permissible impact to use objectives instead of water quality norms till up to development and approval of the latter (in accordance with the standing legislation); when delivering integrated environmental permissions it is necessary to take into account the norms of permissible impact but not only to observe the technological norms. The recommended procedure of obtaining an integrated environmental permission and setting of provisionally permitted discharge volume for water users discharging waste water to surface water bodies has been described. Proposals on elaboration of the legislative basis have been made.


2021 ◽  
Vol 1 ◽  
pp. 34-37
Author(s):  
Aleksey V. Menkenov ◽  

Legal protection of water bodies and ensuring a special regime of economic and other activities within the boundaries of their water protection zones presuppose a clear establishment of their coastline and entering information about it in the relevant state registers. The author studies the legal problems of revising the boundaries of water bodies associated with seasonal and long-term climatic fluctuations in the area of their water mirror. The author also suggested adding methods for economic use of surface water bodies.


2020 ◽  
Author(s):  
Olga Engels ◽  
Kerstin Schulze ◽  
Jürgen Kusche ◽  
Simon Deggim ◽  
Annette Eicker ◽  
...  

<p>To better understand global freshwater resources, we combine the state-of-the-art global hydrological model WGHM with Total Water Storage Anomalies (TWSA) derived from the Gravity Recovery and Climate Experiment (GRACE) satellite mission in an ensemble-based calibration and data assimilation (CDA) framework. However, when dealing with GRACE data, their limited horizontal resolution represents a major challenge. Filtering and/or ’destriping’ is the usual approach for suppressing GRACE-specific spatial noise, which causes spatial leakage and in turn attenuation of signal and reduction of spatial resolution. In GlobalCDA project, we derive altimetry-based storage variations along with corresponding uncertainties of surface water bodies, such as lakes and reservoirs, that feature significantly higher spatial resolution compared to GRACE-based TWSA. These can, additionally, be incorporated into the CDA framework.</p><p>In this study, we investigate several possibilities on how to use the additional remote sensing observations within the CDA over the Mississippi basin for the time span 2003 - 2016. For this, we run the CDA (i) using GRACE-based TWSA only, (ii) removing altimetry-based storage variations of surface water bodies from GRACE-TWSA, (iii) removing and restoring altimetry-based storage variations for GRACE-TWSA, and (iv) directly using altimetry-based storage variations. New observation operators are constructed for (ii) and (iv). The results are validated against independent discharge observations.</p>


Sign in / Sign up

Export Citation Format

Share Document