scholarly journals Ku- and Ka-Band Ocean Surface Radar Backscatter Model Functions at Low-Incidence Angles Using Full-Swath GPM DPR Data

2021 ◽  
Vol 13 (8) ◽  
pp. 1569
Author(s):  
Alamgir Hossan ◽  
William Linwood Jones

This paper presents the results of the first characterization of coincident Ku- and Ka-band ocean surface normalized radar cross section measurements at earth incidence angles 0°–18° using one year of wide swath Global Precipitation Measurement (GPM) mission dual frequency precipitation radar (DPR) data. Empirical geophysical model functions were derived for both bands, isotropic and directorial sensitivity were assessed, and finally, sea surface temperature (SST) dependence of radar backscatter, at both bands, were investigated. The Ka-band exhibited higher vector wind sensitivity for a low-to-moderate wind speeds regime, and the SST effects were also observed to be substantially larger at Ka-band than at Ku-band.

2018 ◽  
Vol 57 (9) ◽  
pp. 2161-2178 ◽  
Author(s):  
Kamil Mroz ◽  
Alessandro Battaglia ◽  
Timothy J. Lang ◽  
Simone Tanelli ◽  
Gian Franco Sacco

AbstractA statistical analysis of simultaneous observations of more than 800 hailstorms over the continental United States performed by the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR) and the ground-based Next Generation Weather Radar (NEXRAD) network has been carried out. Several distinctive features of DPR measurements of hail-bearing columns, potentially exploitable by hydrometeor classification algorithms, are identified. In particular, the height and the strength of the Ka-band reflectivity peak show a strong relationship with the hail shaft area within the instrument field of view (FOV). Signatures of multiple scattering (MS) at the Ka band are observed for a range of rimed particles, including but not exclusively for hail. MS amplifies uncertainty in the effective Ka reflectivity estimate and has a negative impact on the accuracy of dual-frequency rainfall retrievals at the ground. The hydrometeor composition of convective cells presents a large inhomogeneity within the DPR FOV. Strong nonuniform beamfilling (NUBF) introduces large ambiguities in the attenuation correction at Ku and Ka bands, which additionally hamper quantitative retrievals. The effective detection of profiles affected by MS is a very challenging task, since the inhomogeneity within the DPR FOV may result in measurements that look remarkably like MS signatures. The shape of the DPR reflectivity profiles is the result of the complex interplay between the scattering properties of the different hydrometeors, NUBF, and MS effects, which significantly reduces the ability of the DPR system to detect hail at the ground.


2020 ◽  
Vol 59 (7) ◽  
pp. 1195-1215
Author(s):  
Ruiyao Chen ◽  
Ralf Bennartz

AbstractThe sensitivity of microwave brightness temperatures (TBs) to hydrometeors at frequencies between 89 and 190 GHz is investigated by comparing Fengyun-3C (FY-3C) Microwave Humidity Sounder-2 (MWHS-2) measurements with radar reflectivity profiles and retrieved products from the Global Precipitation Measurement mission’s Dual-Frequency Precipitation Radar (DPR). Scattering-induced TB depressions (ΔTBs), calculated by subtracting simulated cloud-free TBs from bias-corrected observed TBs for each channel, are compared with DPR-retrieved hydrometeor water path (HWP) and vertically integrated radar reflectivity ZINT. We also account for the number of hydrometeors actually visible in each MWHS-2 channel by weighting HWP with the channel’s cloud-free gas transmission profile and the observation slant path. We denote these transmission-weighted, slant-path-integrated quantities with a superscript asterisk (e.g., HWP*). The so-derived linear sensitivity of ΔTB with respect to HWP* increases with frequency roughly to the power of 1.78. A retrieved HWP* of 1 kg m−2 at 89 GHz on average corresponds to a decrease in observed TB, relative to a cloud-free background, of 11 K. At 183 GHz, the decrease is about 34–53 K. We perform a similar analysis using the vertically integrated, transmission-weighted slant-path radar reflectivity and find that ΔTB also decreases approximately linearly with . The exponent of 0.58 corresponds to the one we find in the purely DPR-retrieval-based ZINT–HWP relation. The observed sensitivities of ΔTB with respect to and HWP* allow for the validation of hydrometeor scattering models.


2021 ◽  
Author(s):  
Linda Bogerd ◽  
Hidde Leijnse ◽  
Aart Overeem ◽  
Remko Uijlenhoet

<p>The Global Precipitation Measurement mission (GPM) is one of the recent efforts to provide satellite-based global precipitation estimates. The GPM Profiling Algorithm (GPROF) converts microwave radiation measured by passive microwave (PMW) sensors onboard constellation satellites into precipitation. Over land, precipitation estimates are obtained from high frequency PMW-channels that measure the radiance scattered by ice particles in rain clouds. However, due to the limited scattering related to shallow and light precipitation, it is challenging to distinguish these signals from background radiation that is naturally emitted from the Earth’s surface.</p><p>Increased understanding of the physical processes during precipitation events can be used to improve PMW-based precipitation retrievals. This study couples overpasses of GPM radiometers over the Netherlands to two dual-polarization radars from the Royal Netherlands Meteorological Institute (KNMI). The Netherlands is an ideal setting for this study due to the availability of high-quality ground-based measurements, the frequent occurrence of shallow events, the absence of ground-clutter related to mountains, and the varying background emission related to its coastal location.</p><p>The coupling of overpasses with ground-based precipitation radars provides the opportunity to relate GPROFs performance to physical characteristics of precipitation events, such as the vertical reflectivity profile and dual-polarization information on the melting layer. Furthermore, simultaneous radiometer estimates and space-based reflectivity profiles from the dual-frequency precipitation radar (DPR) onboard the GPM core satellite are coupled to the ground-based reflectivity profiles for selected case studies. Because the a-priori database implemented in the GPROF algorithm is based on observations from the DPR, the comparison of the reflectivity profiles further unravels discrepancies between GPROF and ground-based estimates.</p>


2019 ◽  
Vol 58 (7) ◽  
pp. 1429-1448 ◽  
Author(s):  
Gail Skofronick-Jackson ◽  
Mark Kulie ◽  
Lisa Milani ◽  
Stephen J. Munchak ◽  
Norman B. Wood ◽  
...  

AbstractRetrievals of falling snow from space-based observations represent key inputs for understanding and linking Earth’s atmospheric, hydrological, and energy cycles. This work quantifies and investigates causes of differences among the first stable falling snow retrieval products from the Global Precipitation Measurement (GPM) Core Observatory satellite and CloudSat’s Cloud Profiling Radar (CPR) falling snow product. An important part of this analysis details the challenges associated with comparing the various GPM and CloudSat snow estimates arising from different snow–rain classification methods, orbits, resolutions, sampling, instrument specifications, and algorithm assumptions. After equalizing snow–rain classification methodologies and limiting latitudinal extent, CPR observes nearly 10 (3) times the occurrence (accumulation) of falling snow as GPM’s Dual-Frequency Precipitation Radar (DPR). The occurrence disparity is substantially reduced if CloudSat pixels are averaged to simulate DPR radar pixels and CPR observations are truncated below the 8-dBZ reflectivity threshold. However, even though the truncated CPR- and DPR-based data have similar falling snow occurrences, average snowfall rate from the truncated CPR record remains significantly higher (43%) than the DPR, indicating that retrieval assumptions (microphysics and snow scattering properties) are quite different. Diagnostic reflectivity (Z)–snow rate (S) relationships were therefore developed at Ku and W band using the same snow scattering properties and particle size distributions in a final effort to minimize algorithm differences. CPR–DPR snowfall amount differences were reduced to ~16% after adopting this diagnostic Z–S approach.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1260 ◽  
Author(s):  
Zuhang Wu ◽  
Yun Zhang ◽  
Lifeng Zhang ◽  
Xiaolong Hao ◽  
Hengchi Lei ◽  
...  

In this study, we evaluated the performance of rain-retrieval algorithms for the Version 6 Global Precipitation Measurement Dual-frequency Precipitation Radar (GPM DPR) products, against disdrometer observations and improved their retrieval algorithms by using a revised shape parameter µ derived from long-term Particle Size Velocity (Parsivel) disdrometer observations in Jianghuai region from 2014 to 2018. To obtain the optimized shape parameter, raindrop size distribution (DSD) characteristics of summer and winter seasons over Jianghuai region are analyzed, in terms of six rain rate classes and two rain categories (convective and stratiform). The results suggest that the GPM DPR may have better performance for winter rain than summer rain over Jianghuai region with biases of 40% (80%) in winter (summer). The retrieval errors of rain category-based µ (3–5%) were proved to be the smallest in comparison with rain rate-based µ (11–13%) or a constant µ (20–22%) in rain-retrieval algorithms, with a possible application to rainfall estimations over Jianghuai region. Empirical Dm–Ze and Nw–Dm relationships were also derived preliminarily to improve the GPM rainfall estimates over Jianghuai region.


Sign in / Sign up

Export Citation Format

Share Document