scholarly journals WSGAN: An Improved Generative Adversarial Network for Remote Sensing Image Road Network Extraction by Weakly Supervised Processing

2021 ◽  
Vol 13 (13) ◽  
pp. 2506
Author(s):  
Anna Hu ◽  
Siqiong Chen ◽  
Liang Wu ◽  
Zhong Xie ◽  
Qinjun Qiu ◽  
...  

Road networks play an important role in navigation and city planning. However, current methods mainly adopt the supervised strategy that needs paired remote sensing images and segmentation images. These data requirements are difficult to achieve. The pair segmentation images are not easy to prepare. Thus, to alleviate the burden of acquiring large quantities of training images, this study designed an improved generative adversarial network to extract road networks through a weakly supervised process named WSGAN. The proposed method is divided into two steps: generating the mapping image and post-processing the binary image. During the generation of the mapping image, unlike other road extraction methods, this method overcomes the limitations of manually annotated segmentation images and uses mapping images that can be easily obtained from public data sets. The residual network block and Wasserstein generative adversarial network with gradient penalty loss were used in the mapping network to improve the retention of high-frequency information. In the binary image post-processing, this study used the dilation and erosion method to remove salt-and-pepper noise and obtain more accurate results. By comparing the generated road network results, the Intersection over Union scores reached 0.84, the detection accuracy of this method reached 97.83%, the precision reached 92.00%, and the recall rate reached 91.67%. The experiments used a public dataset from Google Earth screenshots. Benefiting from the powerful prediction ability of GAN, the experiments show that the proposed method performs well at extracting road networks from remote sensing images, even if the roads are covered by the shadows of buildings or trees.

2020 ◽  
Vol 12 (7) ◽  
pp. 1204
Author(s):  
Xinyu Dou ◽  
Chenyu Li ◽  
Qian Shi ◽  
Mengxi Liu

Hyperspectral remote sensing images (HSIs) have a higher spectral resolution compared to multispectral remote sensing images, providing the possibility for more reasonable and effective analysis and processing of spectral data. However, rich spectral information usually comes at the expense of low spatial resolution owing to the physical limitations of sensors, which brings difficulties for identifying and analyzing targets in HSIs. In the super-resolution (SR) field, many methods have been focusing on the restoration of the spatial information while ignoring the spectral aspect. To better restore the spectral information in the HSI SR field, a novel super-resolution (SR) method was proposed in this study. Firstly, we innovatively used three-dimensional (3D) convolution based on SRGAN (Super-Resolution Generative Adversarial Network) structure to not only exploit the spatial features but also preserve spectral properties in the process of SR. Moreover, we used the attention mechanism to deal with the multiply features from the 3D convolution layers, and we enhanced the output of our model by improving the content of the generator’s loss function. The experimental results indicate that the 3DASRGAN (3D Attention-based Super-Resolution Generative Adversarial Network) is both visually quantitatively better than the comparison methods, which proves that the 3DASRGAN model can reconstruct high-resolution HSIs with high efficiency.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1162
Author(s):  
Yang Zhang ◽  
Xiang Li ◽  
Qianyu Zhang

With the rapid development of intelligent transportation, there comes huge demands for high-precision road network maps. However, due to the complex road spectral performance, it is very challenging to extract road networks with complete topologies. Based on the topological networks produced by previous road extraction methods, in this paper, we propose a Multi-conditional Generative Adversarial Network (McGAN) to obtain complete road networks by refining the imperfect road topology. The proposed McGAN, which is composed of two discriminators and a generator, takes both original remote sensing image and the initial road network produced by existing road extraction methods as input. The first discriminator employs the original spectral information to instruct the reconstruction, and the other discriminator aims to refine the road network topology. Such a structure makes the generator capable of receiving both spectral and topological information of the road region, thus producing more complete road networks compared with the initial road network. Three different datasets were used to compare McGan with several recent approaches, which showed that the proposed method significantly improved the precision and recall of the road networks, and also worked well for those road regions where previous methods could hardly obtain complete structures.


2021 ◽  
Vol 13 (16) ◽  
pp. 3167
Author(s):  
Lize Zhang ◽  
Wen Lu ◽  
Yuanfei Huang ◽  
Xiaopeng Sun ◽  
Hongyi Zhang

Mainstream image super-resolution (SR) methods are generally based on paired training samples. As the high-resolution (HR) remote sensing images are difficult to collect with a limited imaging device, most of the existing remote sensing super-resolution methods try to down-sample the collected original images to generate an auxiliary low-resolution (LR) image and form a paired pseudo HR-LR dataset for training. However, the distribution of the generated LR images is generally inconsistent with the real images due to the limitation of remote sensing imaging devices. In this paper, we propose a perceptually unpaired super-resolution method by constructing a multi-stage aggregation network (MSAN). The optimization of the network depends on consistency losses. In particular, the first phase is to preserve the contents of the super-resolved results, by constraining the content consistency between the down-scaled SR results and the low-quality low-resolution inputs. The second stage minimizes perceptual feature loss between the current result and LR input to constrain perceptual-content consistency. The final phase employs the generative adversarial network (GAN) to adding photo-realistic textures by constraining perceptual-distribution consistency. Numerous experiments on synthetic remote sensing datasets and real remote sensing images show that our method obtains more plausible results than other SR methods quantitatively and qualitatively. The PSNR of our network is 0.06dB higher than the SOTA method—HAN on the UC Merced test set with complex degradation.


2019 ◽  
Vol 11 (8) ◽  
pp. 917 ◽  
Author(s):  
Xuran Pan ◽  
Fan Yang ◽  
Lianru Gao ◽  
Zhengchao Chen ◽  
Bing Zhang ◽  
...  

Segmentation of high-resolution remote sensing images is an important challenge with wide practical applications. The increasing spatial resolution provides fine details for image segmentation but also incurs segmentation ambiguities. In this paper, we propose a generative adversarial network with spatial and channel attention mechanisms (GAN-SCA) for the robust segmentation of buildings in remote sensing images. The segmentation network (generator) of the proposed framework is composed of the well-known semantic segmentation architecture (U-Net) and the spatial and channel attention mechanisms (SCA). The adoption of SCA enables the segmentation network to selectively enhance more useful features in specific positions and channels and enables improved results closer to the ground truth. The discriminator is an adversarial network with channel attention mechanisms that can properly discriminate the outputs of the generator and the ground truth maps. The segmentation network and adversarial network are trained in an alternating fashion on the Inria aerial image labeling dataset and Massachusetts buildings dataset. Experimental results show that the proposed GAN-SCA achieves a higher score (the overall accuracy and intersection over the union of Inria aerial image labeling dataset are 96.61% and 77.75%, respectively, and the F1-measure of the Massachusetts buildings dataset is 96.36%) and outperforms several state-of-the-art approaches.


Sign in / Sign up

Export Citation Format

Share Document