scholarly journals Long-Term Changes in the Land–Ocean Ecological Environment in Small Island Countries in the South Pacific: A Fiji Vision

2021 ◽  
Vol 13 (18) ◽  
pp. 3740
Author(s):  
Bozhong Zhu ◽  
Yan Bai ◽  
Xianqiang He ◽  
Xiaoyan Chen ◽  
Teng Li ◽  
...  

Small island countries in the South Pacific are ecologically fragile areas, vulnerable to climate change, and the long-term ecological changes in the sea and land have an important impact on their sustainable development. This study takes Fiji, a typical small island country in the South Pacific, as an example, to analyze the change and connection of marine and terrestrial ecosystem environments based on 30 years of multi-source, satellite, remote-sensing data. From 1991 to 2019, according to the change in forest area in Fiji, three stages were delineated: first was a period of stability, then a decrease, and then a recovery in recent years. From 1991 to 2002, Fiji’s vegetation accounted for 73% of the total area; sea environment surrounding the islands, such as sea level height and sea surface temperature, were relatively low, with high water transparency. From 2002 to 2014, with the development of forestry and tourism, vegetation decreased by 6.89% and bare land increased, which changes the runoff erosion in the drainage basin; correspondingly, the chlorophyll a concentration in three major estuaries was found to be slightly increased with low water transparency. Meanwhile, coupled with the rising sea temperature, the area of Fiji’s coral reefs shrank significantly, with 51.13% of the total loss of coral reefs occurring in the Vanua Levu, where bare land and runoff were more distributed in its drainage basin. From 2014 to 2019, Fiji’s vegetation and coral reef areas recovered from the former stage; affected by short-term climate oscillations such as El Niño-Southern Oscillation (ENSO), the sea surface temperature showed a significant abnormal drop and the water transparency decreased. In the past 30 years (1993–2018), the sea level rise rate around Fiji reached 4 mm/year, and the temperature increased by 0.3 °C, which threatens the coastal ecosystem environment, including coral reefs and mangrove; inappropriate land-use change would worsen the situation in these ecologically fragile areas.

Atmosphere ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 707
Author(s):  
Nkese D. Mc Shine ◽  
Ricardo M. Clarke ◽  
Silvio Gualdi ◽  
Antonio Navarra ◽  
Xsitaaz T. Chadee

Seasonal rainfall in the Caribbean Basin is known to be modulated by sea surface temperature anomalies (SSTAs) in the Atlantic and Pacific Oceans, and particularly those in the Equatorial Pacific and Atlantic and the Tropical North Atlantic. However, little is known about how these major oceans influence the seasonal precipitation of individual small island states within the region as climate variability at the island-scale may differ from the Caribbean as a whole. Correlation and composite analyses were determined using monthly rainfall data for the southernmost island of the Caribbean, Trinidad, and an extended area of global SSTAs. In addition to the subregions that are known to modulate Caribbean rainfall, our analyses show that sea surface temperatures (SSTs) located in the subtropical South Pacific, the South Atlantic, and the Gulf of Mexico also have weak (r2 < 0.5) yet significant influences on the islands’ early rainy season (ERS) and late rainy season (LRS) precipitation. Composite maps confirm that the South Pacific, South Atlantic, and the Gulf of Mexico show significant SSTAs in December–January–February (DJF) and March–April–May (MAM) prior to the ERS and the LRS. Statistical models for seasonal forecasting of rainfall at the island scale could be improved by using the SSTAs of the Pacific and Atlantic subregions identified in this study.


2021 ◽  
Vol 14 ◽  
pp. 117863292110208
Author(s):  
Subhashni Taylor

Anthropogenic climate change and related sea level rise will have a range of impacts on populations, particularly in the low lying Pacific island countries (PICs). One of these impacts will be on the health and well-being of people in these nations. In such cases, access to medical facilities is important. This research looks at the medical facilities currently located on 14 PICs and how climate change related impacts such as sea level rise may affect these facilities. The medical infrastructure in each country were located using information from a range of sources such as Ministry of Health (MoH) websites, World Health Organization, Doctors Assisting in South Pacific Islands (DAISI), Commonwealth Health Online, and Google Maps. A spatial analysis was undertaken to identify medical infrastructure located within 4 zones from the coastline of each country: 0 to 50 m, 50 to 100 m, 100 to 200 m, and 200 to 500 m. The findings indicate that 62% of all assessed medical facilities in the 14 PICs are located within 500 m of the coast. The low-lying coral atoll countries of Kiribati, Marshall Islands, Nauru, Palau, Tokelau, and Tuvalu will be highly affected as all medical facilities in these countries fall within 500 m of the coast. The results provide a baseline analysis of the threats posed by sea-level rise to existing critical medical infrastructure in the 14 PICs and could be useful for adaptive planning. These countries have limited financial and technical resources which will make adaptation challenging.


2021 ◽  
Vol 8 ◽  
Author(s):  
Laurence H. De Clippele ◽  
Denise Risch

This study compares the noise levels at the cold-water coral Tisler reef, before and after the closure of the border between Norway and Sweden, which occurred as a direct result of the COVID-19 pandemic. The Tisler reef is a marine protected area located under a ferry “highway” that connects Norway and Sweden. Cold-water coral reefs are recognised as being important hotspots of both biodiversity and biomass, they function as breeding and nursing grounds for commercially important fish and are essential in providing ecosystem functions. Whilst studies have shown that fishery, ocean warming, and acidification threaten them, the effects of noise pollution on cold-water coral reefs remains unstudied. To study the severity of noise pollution at the Tisler reef, a long-term acoustic recorder was deployed from 29 January 2020 until 26 May 2020. From 15 March COVID-19 lockdown measures stopped passenger vessel traffic between Norway and Sweden. This study found that the overall noise levels were significantly lower after border closure, due to reduced ferry traffic, wind speeds, and sea level height. When comparing the median hourly noise levels of before vs. after border closure, this study measured a significant reduction in the 63–125 Hz 1/3 octave band noise levels of 8.94 ± 0.88 (MAD) dB during the day (07:00:00–19:59:59) and 1.94 ± 0.11 (MAD) dB during the night (20:00:00–06:59:59). Since there was no ferry traffic during the night, the drop in noise levels at night was likely driven by seasonal changes, i.e., the reduction in wind speed and sea level height when transitioning from winter to spring. Taking into account this seasonal effect, it can be deduced that the COVID-19 border closure reduced the noise levels in the 63–125 Hz 1/3 octave bands at the Tisler reef by 7.0 ± 0.99 (MAD) dB during the day. While the contribution of, and changes in biological, weather-related and geophysical sound sources remain to be assessed in more detail, understanding the extent of anthropogenic noise pollution at the Tisler cold-water coral reef is critical to guide effective management to ensure the long-term health and conservation of its ecosystem functions.


2010 ◽  
Vol 6 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Sue Farran

This article explores a primary source of legal studies, case-law, as a form of narrative in the context of indigenous land rights, and considers how this narrative negotiates pre-colonial land claims in a post-colonial context. Its case-study is the South Pacific island country of Vanuatu, a small-island, least-developed, nation-state, where laws introduced under Anglo–French colonial administration are still retained and sit uneasily alongside the customary forms of land tenure which govern ninety percent of all land in the islands. The article looks at the traditional and changing role of narrative presented as evidence by claimants and their witnesses against a context of rapid social and economic change, and asks whether the metamorphosis of narrative signals the future survival or imminent demise of customary indigenous land rights and what that might mean for these island people faced by the pressures of development.


2019 ◽  
Vol 34 (4) ◽  
pp. 567-579
Author(s):  
Dirk V. Erler ◽  
Benjamin O. Shepherd ◽  
Braddock K. Linsley ◽  
Luke D. Nothdurft ◽  
Quan Hua ◽  
...  

2010 ◽  
Vol 181 (2) ◽  
pp. 171-181 ◽  
Author(s):  
Hugues Fenies ◽  
Gilles Lericolais ◽  
Henry W. Posamentier

Abstract This paper presents a comparison between the system tract architecture and the reservoir geometries of the Gironde and Leyre (Arcachon) incised-valley fills, both located within the Bay of Biscay 100 km apart. This study, based on high resolution seismic lines acquired by Ifremer on the continental shelf and onshore core and well data, illustrates that some features of the Gironde and Leyre valleys fills are similar while some others are not. The architecture of both valley fills is characterized by fifth order depositional sequences (corresponding to an interval from 120000 yr B.P. to present day). Both valleys are filled predominantly with transgressive systems tract, with associated poorly developed lowstand and highstand systems tracts. Key stratigraphic surfaces punctuate the valley-fill architecture and comprise deeply eroding tidal ravinement surfaces merged with and enhancing, earlier formed, fluvial-related erosive sequence boundaries. These tidal ravinement surfaces can be undulatory in form and in most places mark the basal boundary of the incised valleys. In contrast, nearly horizontal wave ravinement surfaces cap the incised-valley fills, extending over the adjacent interfluves. The Gironde and Leyre (Arcachon) valley fills exhibit two main stratigraphic differences: 1) transgressive systems tract sand bodies are ribbon shaped within the Gironde and tabular shaped within the Leyre; 2) lowstand systems tract deposits, represented by fluvial sediments, are preserved within the Gironde but absent within the Leyre. In a wave- and tide-dominated environment, the geometry of the sandbodies within the transgressive systems tract is a function of the tidal ravinement processes, which characterizes the estuary inlet. Two categories of tidal ravinement processes can be distinguished here: “anchored tidal ravinement” and “sweeping tidal ravinement”. The Gironde estuary is characterized by an “anchored tidal ravinement”. The tidal inlet has remained largely in a fixed location; littoral drift has not shifted the tidal inlet to the south because it is constrained by resistive Eocene carbonates that define the margins of the Gironde incised valley. In contrast, the Leyre estuary is characterized by a “sweeping tidal ravinement”. The inlet has been shifted approximately 30 km to the south by the formation of a littoral drift associated spit. This extensive lateral shifting was made possible by the fact that the incised valley was cut into unconsolidated, easily eroded Pleistocene sands. Within a wave- and tide-dominated environment, the preservation potential of the lowstand systems tract is a function of the size of the fluvial drainage basin. During lowstand time, the erosive power of the fluvial discharge was much greater within the much larger Gironde valley, consequently the fluvial sequence boundary was cut much deeper in the Gironde valley than within the Leyre valley and, correspondingly, the thickness of the associated fluvial deposits was commensurately greater. In response, the lowstand systems tract was not preserved within the Leyre valley fill because the depth of tidal ravinement erosion formed during the sea-level rise and associated transgression was greater than that associated with fluvial incision generated during the sea-level fall.


Sign in / Sign up

Export Citation Format

Share Document