scholarly journals Optimized Estimation of Leaf Mass per Area with a 3D Matrix of Vegetation Indices

2021 ◽  
Vol 13 (18) ◽  
pp. 3761
Author(s):  
Yuwen Chen ◽  
Jia Sun ◽  
Lunche Wang ◽  
Shuo Shi ◽  
Wei Gong ◽  
...  

Leaf mass per area (LMA) is a key plant functional trait closely related to leaf biomass. Estimating LMA in fresh leaves remains challenging due to its masked absorption by leaf water in the short-wave infrared region of reflectance. Vegetation indices (VIs) are popular variables used to estimate LMA. However, their physical foundations are not clear and the generalization ability is limited by the training data. In this study, we proposed a hybrid approach by establishing a three-dimensional (3D) VI matrix for LMA estimation. The relationship between LMA and VIs was constructed using PROSPECT-D model simulations. The three-VI space constituting a 3D matrix was divided into cubical cells and LMA values were assigned to each cell. Then, the 3D matrix retrieves LMA through the three VIs calculated from observations. Two 3D matrices with different VIs were established and validated using a second synthetic dataset, and two comprehensive experimental datasets containing more than 1400 samples of 49 plant species. We found that both 3D matrices allowed good assessments of LMA (R2 = 0.76 and 0.78, RMSE = 0.0016 g/cm2 and 0.0017 g/cm2, respectively for the pooled datasets), and their results were superior to the corresponding single Vis, 2D matrices, and two machine learning methods established with the same VI combinations.

2021 ◽  
Vol 13 (3) ◽  
pp. 536
Author(s):  
Eve Laroche-Pinel ◽  
Mohanad Albughdadi ◽  
Sylvie Duthoit ◽  
Véronique Chéret ◽  
Jacques Rousseau ◽  
...  

The main challenge encountered by Mediterranean winegrowers is water management. Indeed, with climate change, drought events are becoming more intense each year, dragging the yield down. Moreover, the quality of the vineyards is affected and the level of alcohol increases. Remote sensing data are a potential solution to measure water status in vineyards. However, important questions are still open such as which spectral, spatial, and temporal scales are adapted to achieve the latter. This study aims at using hyperspectral measurements to investigate the spectral scale adapted to measure their water status. The final objective is to find out whether it would be possible to monitor the vine water status with the spectral bands available in multispectral satellites such as Sentinel-2. Four Mediterranean vine plots with three grape varieties and different water status management systems are considered for the analysis. Results show the main significant domains related to vine water status (Short Wave Infrared, Near Infrared, and Red-Edge) and the best vegetation indices that combine these domains. These results give some promising perspectives to monitor vine water status.


2021 ◽  
Vol 13 (2) ◽  
pp. 233
Author(s):  
Ilja Vuorinne ◽  
Janne Heiskanen ◽  
Petri K. E. Pellikka

Biomass is a principal variable in crop monitoring and management and in assessing carbon cycling. Remote sensing combined with field measurements can be used to estimate biomass over large areas. This study assessed leaf biomass of Agave sisalana (sisal), a perennial crop whose leaves are grown for fibre production in tropical and subtropical regions. Furthermore, the residue from fibre production can be used to produce bioenergy through anaerobic digestion. First, biomass was estimated for 58 field plots using an allometric approach. Then, Sentinel-2 multispectral satellite imagery was used to model biomass in an 8851-ha plantation in semi-arid south-eastern Kenya. Generalised Additive Models were employed to explore how well biomass was explained by various spectral vegetation indices (VIs). The highest performance (explained deviance = 76%, RMSE = 5.15 Mg ha−1) was achieved with ratio and normalised difference VIs based on the green (R560), red-edge (R740 and R783), and near-infrared (R865) spectral bands. Heterogeneity of ground vegetation and resulting background effects seemed to limit model performance. The best performing VI (R740/R783) was used to predict plantation biomass that ranged from 0 to 46.7 Mg ha−1 (mean biomass 10.6 Mg ha−1). The modelling showed that multispectral data are suitable for assessing sisal leaf biomass at the plantation level and in individual blocks. Although these results demonstrate the value of Sentinel-2 red-edge bands at 20-m resolution, the difference from the best model based on green and near-infrared bands at 10-m resolution was rather small.


Author(s):  
Y. A. Lumban-Gaol ◽  
K. A. Ohori ◽  
R. Y. Peters

Abstract. Satellite-Derived Bathymetry (SDB) has been used in many applications related to coastal management. SDB can efficiently fill data gaps obtained from traditional measurements with echo sounding. However, it still requires numerous training data, which is not available in many areas. Furthermore, the accuracy problem still arises considering the linear model could not address the non-relationship between reflectance and depth due to bottom variations and noise. Convolutional Neural Networks (CNN) offers the ability to capture the connection between neighbouring pixels and the non-linear relationship. These CNN characteristics make it compelling to be used for shallow water depth extraction. We investigate the accuracy of different architectures using different window sizes and band combinations. We use Sentinel-2 Level 2A images to provide reflectance values, and Lidar and Multi Beam Echo Sounder (MBES) datasets are used as depth references to train and test the model. A set of Sentinel-2 and in-situ depth subimage pairs are extracted to perform CNN training. The model is compared to the linear transform and applied to two other study areas. Resulting accuracy ranges from 1.3 m to 1.94 m, and the coefficient of determination reaches 0.94. The SDB model generated using a window size of 9x9 indicates compatibility with the reference depths, especially at areas deeper than 15 m. The addition of both short wave infrared bands to the four visible bands in training improves the overall accuracy of SDB. The implementation of the pre-trained model to other study areas provides similar results depending on the water conditions.


2021 ◽  
Author(s):  
Aurore Lafond ◽  
Maurice Ringer ◽  
Florian Le Blay ◽  
Jiaxu Liu ◽  
Ekaterina Millan ◽  
...  

Abstract Abnormal surface pressure is typically the first indicator of a number of problematic events, including kicks, losses, washouts and stuck pipe. These events account for 60–70% of all drilling-related nonproductive time, so their early and accurate detection has the potential to save the industry billions of dollars. Detecting these events today requires an expert user watching multiple curves, which can be costly, and subject to human errors. The solution presented in this paper is aiming at augmenting traditional models with new machine learning techniques, which enable to detect these events automatically and help the monitoring of the drilling well. Today’s real-time monitoring systems employ complex physical models to estimate surface standpipe pressure while drilling. These require many inputs and are difficult to calibrate. Machine learning is an alternative method to predict pump pressure, but this alone needs significant labelled training data, which is often lacking in the drilling world. The new system combines these approaches: a machine learning framework is used to enable automated learning while the physical models work to compensate any gaps in the training data. The system uses only standard surface measurements, is fully automated, and is continuously retrained while drilling to ensure the most accurate pressure prediction. In addition, a stochastic (Bayesian) machine learning technique is used, which enables not only a prediction of the pressure, but also the uncertainty and confidence of this prediction. Last, the new system includes a data quality control workflow. It discards periods of low data quality for the pressure anomaly detection and enables to have a smarter real-time events analysis. The new system has been tested on historical wells using a new test and validation framework. The framework runs the system automatically on large volumes of both historical and simulated data, to enable cross-referencing the results with observations. In this paper, we show the results of the automated test framework as well as the capabilities of the new system in two specific case studies, one on land and another offshore. Moreover, large scale statistics enlighten the reliability and the efficiency of this new detection workflow. The new system builds on the trend in our industry to better capture and utilize digital data for optimizing drilling.


Sign in / Sign up

Export Citation Format

Share Document