scholarly journals URNet: A U-Shaped Residual Network for Lightweight Image Super-Resolution

2021 ◽  
Vol 13 (19) ◽  
pp. 3848
Author(s):  
Yuntao Wang ◽  
Lin Zhao ◽  
Liman Liu ◽  
Huaifei Hu ◽  
Wenbing Tao

It is extremely important and necessary for low computing power or portable devices to design more lightweight algorithms for image super-resolution (SR). Recently, most SR methods have achieved outstanding performance by sacrificing computational cost and memory storage, or vice versa. To address this problem, we introduce a lightweight U-shaped residual network (URNet) for fast and accurate image SR. Specifically, we propose a more effective feature distillation pyramid residual group (FDPRG) to extract features from low-resolution images. The FDPRG can effectively reuse the learned features with dense shortcuts and capture multi-scale information with a cascaded feature pyramid block. Based on the U-shaped structure, we utilize a step-by-step fusion strategy to improve the performance of feature fusion of different blocks. This strategy is different from the general SR methods which only use a single Concat operation to fuse the features of all basic blocks. Moreover, a lightweight asymmetric residual non-local block is proposed to model the global context information and further improve the performance of SR. Finally, a high-frequency loss function is designed to alleviate smoothing image details caused by pixel-wise loss. Simultaneously, the proposed modules and high-frequency loss function can be easily plugged into multiple mature architectures to improve the performance of SR. Extensive experiments on multiple natural image datasets and remote sensing image datasets show the URNet achieves a better trade-off between image SR performance and model complexity against other state-of-the-art SR methods.

Author(s):  
Qiang Yu ◽  
Feiqiang Liu ◽  
Long Xiao ◽  
Zitao Liu ◽  
Xiaomin Yang

Deep-learning (DL)-based methods are of growing importance in the field of single image super-resolution (SISR). The practical application of these DL-based models is a remaining problem due to the requirement of heavy computation and huge storage resources. The powerful feature maps of hidden layers in convolutional neural networks (CNN) help the model learn useful information. However, there exists redundancy among feature maps, which can be further exploited. To address these issues, this paper proposes a lightweight efficient feature generating network (EFGN) for SISR by constructing the efficient feature generating block (EFGB). Specifically, the EFGB can conduct plain operations on the original features to produce more feature maps with parameters slightly increasing. With the help of these extra feature maps, the network can extract more useful information from low resolution (LR) images to reconstruct the desired high resolution (HR) images. Experiments conducted on the benchmark datasets demonstrate that the proposed EFGN can outperform other deep-learning based methods in most cases and possess relatively lower model complexity. Additionally, the running time measurement indicates the feasibility of real-time monitoring.


2021 ◽  
Vol 213 ◽  
pp. 106663
Author(s):  
Yujie Dun ◽  
Zongyang Da ◽  
Shuai Yang ◽  
Yao Xue ◽  
Xueming Qian

2020 ◽  
Vol 12 (4) ◽  
pp. 676 ◽  
Author(s):  
Yong Yang ◽  
Wei Tu ◽  
Shuying Huang ◽  
Hangyuan Lu

Pansharpening is the process of fusing a low-resolution multispectral (LRMS) image with a high-resolution panchromatic (PAN) image. In the process of pansharpening, the LRMS image is often directly upsampled by a scale of 4, which may result in the loss of high-frequency details in the fused high-resolution multispectral (HRMS) image. To solve this problem, we put forward a novel progressive cascade deep residual network (PCDRN) with two residual subnetworks for pansharpening. The network adjusts the size of an MS image to the size of a PAN image twice and gradually fuses the LRMS image with the PAN image in a coarse-to-fine manner. To prevent an overly-smooth phenomenon and achieve high-quality fusion results, a multitask loss function is defined to train our network. Furthermore, to eliminate checkerboard artifacts in the fusion results, we employ a resize-convolution approach instead of transposed convolution for upsampling LRMS images. Experimental results on the Pléiades and WorldView-3 datasets prove that PCDRN exhibits superior performance compared to other popular pansharpening methods in terms of quantitative and visual assessments.


Author(s):  
Guoan Cheng ◽  
Ai Matsune ◽  
Huaijuan Zang ◽  
Toru Kurihara ◽  
Shu Zhan

In this paper, we propose an enhanced dual path attention network (EDPAN) for image super-resolution. ResNet is good at implicitly reusing extracted features, DenseNet is good at exploring new features. Dual Path Network (DPN) combines ResNets and DenseNet to create a more accurate architecture than the straightforward one. We experimentally show that the residual network performs best when each block consists of two convolutions, and the dense network performs best when each micro-block consists of one convolution. Following these ideas, our EDPAN exploits the advantages of the residual structure and the dense structure. Besides, to deploy the computations for features more effectively, we introduce the attention mechanism into our EDPAN. Moreover, to relieve the parameters burden, we also utilize recursive learning to propose a lightweight model. In the experiments, we demonstrate the effectiveness and robustness of our proposed EDPAN on different degradation situations. The quantitative results and visualization comparison can sufficiently indicate that our EDPAN achieves favorable performance over the state-of-the-art frameworks.


2021 ◽  
Author(s):  
Taiping Mo ◽  
Dehong Chen

Abstract The Invertible Rescaling Net (IRN) is modeling image downscaling and upscaling as a unified task to alleviate the ill-posed problem in the super-resolution task. However, the ability of potential variables of the model embedded high-frequency information is general, which affects the performance of the reconstructed image. In order to improve the ability of embedding high-frequency information and further reduce the complexity of the model, the potential variables and feature extraction of key components of IRN are improved. Attention mechanism and dilated convolution are used to improve the feature extraction block, reduce the parameters of feature extraction block, and allocate more attention to the image details. The high frequency sub-band interpolation method of wavelet domain is used to improve the potential variables, process and save the image edge, and enhance the ability of embedding high frequency information. Experimental results show that compared with IRN model, improved model has less complexity and excellent performance.


2020 ◽  
Vol 79 (29-30) ◽  
pp. 21265-21278
Author(s):  
Qiong Wu ◽  
Chunxiao Fan ◽  
Yong Li ◽  
Yang Li ◽  
Jiahao Hu

Sign in / Sign up

Export Citation Format

Share Document