scholarly journals Combinational Fusion and Global Attention of the Single-Shot Method for Synthetic Aperture Radar Ship Detection

2021 ◽  
Vol 13 (23) ◽  
pp. 4781
Author(s):  
Libo Xu ◽  
Chaoyi Pang ◽  
Yan Guo ◽  
Zhenyu Shu

Synthetic Aperture Radar (SAR), an active remote sensing imaging radar technology, has certain surface penetration ability and can work all day and in all weather conditions. It is widely applied in ship detection to quickly collect ship information on the ocean surface from SAR images. However, the ship SAR images are often blurred, have large noise interference, and contain more small targets, which pose challenges to popular one-stage detectors, such as the single-shot multi-box detector (SSD). We designed a novel network structure, a combinational fusion SSD (CF-SSD), based on the framework of the original SSD, to solve these problems. It mainly includes three blocks, namely a combinational fusion (CF) block, a global attention module (GAM), and a mixed loss function block, to significantly improve the detection accuracy of SAR images and remote sensing images and maintain a fast inference speed. The CF block equips every feature map with the ability to detect objects of all sizes at different levels and forms a consistent and powerful detection structure to learn more useful information for SAR features. The GAM block produces attention weights and considers the channel attention information of various scale feature information or cross-layer maps so that it can obtain better feature representations from the global perspective. The mixed loss function block can better learn the positions of the truth anchor boxes by considering corner and center coordinates simultaneously. CF-SSD can effectively extract and fuse the features, avoid the loss of small or blurred object information, and precisely locate the object position from SAR images. We conducted experiments on the SAR ship dataset SSDD, and achieved a 90.3% mAP and fast inference speed close to that of the original SSD. We also tested our model on the remote sensing dataset NWPU VHR-10 and the common dataset VOC2007. The experimental results indicate that our proposed model simultaneously achieves excellent detection performance and high efficiency.

2020 ◽  
Vol 8 (6) ◽  
pp. 2513-2517

Ship detection is a procedure which asserts in fields such as ocean and sea management, vessel detection, marine superintendence, and rein, and also can be applied to exclude extralegal actions. Remote sensing can be utilized as a potential tool for zonular and universal monitoring to attain the forenamed goals. Among the radar images, the precious datum from Synthetic Aperture Radar (SAR) is playing a serious duty in remote sensing. Howsoever, vessel detecting in heterogeneous and strong clutter is still a question in this regard. The letter points to a ship detection scheme for SAR images exploiting a segmentation-based morphological operation using entropy. In the presented scheme, the morphological operations are adopted to intercept the background and foreground in the satellite images. The method was implemented and tested on the homogenous, heterogeneous and strong clutter SAR images and the results are promising and showing that the proposed method can improve the vessel detection from homogenous and heterogeneous and strong clutter satellite images


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3580 ◽  
Author(s):  
Jie Wang ◽  
Ke-Hong Zhu ◽  
Li-Na Wang ◽  
Xing-Dong Liang ◽  
Long-Yong Chen

In recent years, multi-input multi-output (MIMO) synthetic aperture radar (SAR) systems, which can promote the performance of 3D imaging, high-resolution wide-swath remote sensing, and multi-baseline interferometry, have received considerable attention. Several papers on MIMO-SAR have been published, but the research of such systems is seriously limited. This is mainly because the superposed echoes of the multiple transmitted orthogonal waveforms cannot be separated perfectly. The imperfect separation will introduce ambiguous energy and degrade SAR images dramatically. In this paper, a novel orthogonal waveform separation scheme based on echo-compression is proposed for airborne MIMO-SAR systems. Specifically, apart from the simultaneous transmissions, the transmitters are required to radiate several times alone in a synthetic aperture to sense their private inner-aperture channels. Since the channel responses at the neighboring azimuth positions are relevant, the energy of the solely radiated orthogonal waveforms in the superposed echoes will be concentrated. To this end, the echoes of the multiple transmitted orthogonal waveforms can be separated by cancelling the peaks. In addition, the cleaned echoes, along with original superposed one, can be used to reconstruct the unambiguous echoes. The proposed scheme is validated by simulations.


2019 ◽  
Vol 11 (22) ◽  
pp. 2694 ◽  
Author(s):  
Fei Gao ◽  
Wei Shi ◽  
Jun Wang ◽  
Erfu Yang ◽  
Huiyu Zhou

Independent of daylight and weather conditions, synthetic aperture radar (SAR) images have been widely used for ship monitoring. The traditional methods for SAR ship detection are highly dependent on the statistical models of sea clutter or some predefined thresholds, and generally require a multi-step operation, which results in time-consuming and less robust ship detection. Recently, deep learning algorithms have found wide applications in ship detection from SAR images. However, due to the multi-resolution imaging mode and complex background, it is hard for the network to extract representative SAR target features, which limits the ship detection performance. In order to enhance the feature extraction ability of the network, three improvement techniques have been developed. Firstly, multi-level sparse optimization of SAR image is carried out to handle clutters and sidelobes so as to enhance the discrimination of the features of SAR images. Secondly, we hereby propose a novel split convolution block (SCB) to enhance the feature representation of small targets, which divides the SAR images into smaller sub-images as the input of the network. Finally, a spatial attention block (SAB) is embedded in the feature pyramid network (FPN) to reduce the loss of spatial information, during the dimensionality reduction process. In this paper, experiments on the multi-resolution SAR images of GaoFen-3 and Sentinel-1 under complex backgrounds are carried out and the results verify the effectiveness of SCB and SAB. The comparison results also show that the proposed method is superior to several state-of-the-art object detection algorithms.


2020 ◽  
pp. 1223-1232
Author(s):  
Aseel Sami ◽  
Matheel E. Abdulmunem

In this review paper, several studies and researches were surveyed for assisting future researchers to identify available techniques in the field of classification of Synthetic Aperture Radar (SAR) images. SAR images are becoming increasingly important in a variety of remote sensing applications due to the ability of SAR sensors to operate in all types of weather conditions, including day and night remote sensing for long ranges and coverage areas. Its properties of vast planning, search, rescue, mine detection, and target identification make it very attractive for surveillance and observation missions of Earth resources.  With the increasing popularity and availability of these images, the need for machines has emerged to enhance the ability to identify and interpret these images effectively. This is due to the fact that SAR image processing requires the formation of an image from the measured radar scatter returns, followed by a treatment to discover and define the image's composition. After reviewing several previous studies that succeeded in achieving a classification of SAR images for specific goals, it became obvious that they could be generalized to all types of SAR images. The most prominent use of Convolutional Neural Networks (CNN) was successful in extracting features from the images and training the neural network to analyze and classify them into classes according to these features. The dataset used in this model was obtained from the Moving and Stationary Target Acquisition and Recognition (MSTAR) database, which consists of a set of SAR images of military vehicles, for which the application of the CNN approach achieved a final accuracy of 97.91% on ten different classes.


2021 ◽  
Vol 42 (13) ◽  
pp. 5014-5028
Author(s):  
Kai Zhao ◽  
Yan Zhou ◽  
Xin Chen ◽  
Bing Wang ◽  
Yong Zhang

2018 ◽  
Vol 71 (4) ◽  
pp. 788-804 ◽  
Author(s):  
Chan-Su Yang ◽  
Ju-Han Park ◽  
Ahmed Harun-Al Rashid

Land masking of Synthetic Aperture Radar (SAR) images is generally accomplished by applying either archived shoreline databases or image segmentation. However, those methods cannot be solely applied to geographical areas complicated with many small islands and exposed rocks. Therefore, we have proposed a new procedure where Sobel edge extraction is applied to detect the edges of all objects from KOMPSAT-5 X-band SAR images, followed by a merging process with the edges from the land objects based on Electronic Navigational Chart (ENC) coastlines. Using the land mask data, geometrically corrected SAR images were masked before applying a ship detection algorithm. This land masking procedure was applied to several images covering different areas of the Korean Peninsula. The results show that land targets such as newly constructed and natural objects were also masked, and thus did not create false alarms during ship detection. Therefore, this method can be used to assist precise ship detection using SAR images in coastal waters.


2021 ◽  
Vol 13 (4) ◽  
pp. 604
Author(s):  
Donato Amitrano ◽  
Gerardo Di Martino ◽  
Raffaella Guida ◽  
Pasquale Iervolino ◽  
Antonio Iodice ◽  
...  

Microwave remote sensing has widely demonstrated its potential in the continuous monitoring of our rapidly changing planet. This review provides an overview of state-of-the-art methodologies for multi-temporal synthetic aperture radar change detection and its applications to biosphere and hydrosphere monitoring, with special focus on topics like forestry, water resources management in semi-arid environments and floods. The analyzed literature is categorized on the base of the approach adopted and the data exploited and discussed in light of the downstream remote sensing market. The purpose is to highlight the main issues and limitations preventing the diffusion of synthetic aperture radar data in both industrial and multidisciplinary research contexts and the possible solutions for boosting their usage among end-users.


Sign in / Sign up

Export Citation Format

Share Document