scholarly journals PM2.5 Concentration Forecasting over the Central Area of the Yangtze River Delta Based on Deep Learning Considering the Spatial Diffusion Process

2021 ◽  
Vol 13 (23) ◽  
pp. 4834
Author(s):  
Mingyue Lu ◽  
Tengfei Lao ◽  
Manzhu Yu ◽  
Yadong Zhang ◽  
Jianqin Zheng ◽  
...  

Precise PM2.5 concentration forecasting is significant to environmental management and human health. Researchers currently add various parameters to deep learning models for PM2.5 concentration forecasting, but most of them ignore the problem of PM2.5 concentration diffusion. To address this issue, a deep learning model-based PM2.5 concentration forecasting method considering the diffusion process is proposed in this paper. We designed a spatial diffuser to express the diffusion process of gaseous pollutants; that is, the concentration of PM2.5 in four surrounding directions was taken as the explanatory variable. The information from the target and associated stations was then employed as inputs and fed into the model, together with meteorological features and other pollutant parameters. The hourly data from 1 January 2019 to 31 December 2019, and the central area of the Yangtze River Delta, were used to conduct the experiment. The results showed that the forecasting performance of the method we proposed is superior to that of ignoring diffusion, with an average RMSE = 8.247 μg/m3 and average R2 = 0.922 in three different deep learning models, RNN, LSTM, and GRU, in which RMSE decreased by 10.52% and R2 increased by 2.22%. Our PM2.5 concentration forecasting method, which was based on an understanding of basic physical laws and conformed to the characteristics of data-driven models, achieved excellent performance.

Atmosphere ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 55 ◽  
Author(s):  
Guoliang Yun ◽  
Yuanrong He ◽  
Yuantong Jiang ◽  
Panfeng Dou ◽  
Shaoqing Dai

High concentrations of PM2.5 are a primary cause of haze in the lower atmosphere. A better understanding of the spatial heterogeneity and driving factors of PM2.5 concentrations is important for effective regional prevention and control. In this study, we carried out remote sensing inversion of PM2.5 concentration data over a long time series and used spatial statistical analyses and a geographical detector model to reveal the spatial distribution and variation characteristics of PM2.5 and the main influencing factors in the Yangtze River Delta from 2005 to 2015. Our results show that (1) The average annual PM2.5 concentration in the Yangtze River Delta prior to 2007 displayed an increasing trend, followed by a decreasing trend after 2007 which eventually stabilized; and (2) climate regionalization and geomorphology were the dominant natural factors driving PM2.5 concentration diffusion, while total carbon dioxide emissions and population density were the dominant socioeconomic factors affecting the formation of PM2.5. Natural factors and socioeconomic factors together lead to PM2.5 pollution. These findings provide an interpretation of PM2.5 spatial distribution and the mechanisms influencing PM2.5 pollution, which can help the Chinese government develop effective abatement strategies.


2021 ◽  
Vol 10 (6) ◽  
pp. 413
Author(s):  
Weihao Xuan ◽  
Feng Zhang ◽  
Hongye Zhou ◽  
Zhenhong Du ◽  
Renyi Liu

The increase in atmospheric pollution dominated by particles with an aerodynamic diameter smaller than 2.5 μm (PM2.5) has become one of the most serious environmental hazards worldwide. The geographically weighted regression (GWR) model is a vital method to estimate the spatial distribution of the ground-level PM2.5 concentration. Wind information reflects the directional dependence of the spatial distribution, which can be abstracted as a combination of spatial and directional non-stationarity components. In this paper, a GWR model considering directional non-stationarity (GDWR) is proposed. To assess the efficacy of our method, monthly PM2.5 concentration estimation was carried out as a case study from March 2015 to February 2016 in the Yangtze River Delta region. The results indicate that the GDWR model attained the best fitting effect (0.79) and the smallest error fluctuation, the ordinary least squares (OLS) (0.589) fitting effect was the worst, and the GWR (0.72) and directionally weighted regression (DWR) (0.74) fitting effects were moderate. A non-stationarity hypothesis test was performed to confirm directional non-stationarity. The distribution of the PM2.5 concentration in the Yangtze River Delta is also discussed here.


2020 ◽  
Vol 110 ◽  
pp. 105889 ◽  
Author(s):  
Guoyu Xu ◽  
Xiaodong Ren ◽  
Kangning Xiong ◽  
Luqi Li ◽  
Xuecheng Bi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document