scholarly journals An Inter-Subband Processing Algorithm for Complex Clutter Suppression in Passive Bistatic Radar

2021 ◽  
Vol 13 (23) ◽  
pp. 4954
Author(s):  
Luo Zuo ◽  
Jun Wang ◽  
Jinxin Sui ◽  
Nan Li

Clutter suppression is a challenging problem for passive bistatic radar systems, given the complexity of actual clutter scenarios (stationary, time-varying and fractional-order clutter). Such complex clutter induces intense sidelobes in the entire range-Doppler plane and thus degrades target-detection performance, especially for low-observable targets. In this paper, a novel method, denominated as the batch version of the extensive cancellation algorithm (ECA) in the frequency domain (ECA-FB), is presented for the first time, to suppress stationary clutter and its sidelobes. Specifically, in this method, the received signal is first divided into short batches in the frequency domain to coarsen the range resolution, and then the clutter is removed over each batch via ECA. Further, to suppress the time-varying clutter, a Doppler-shifted version of ECA-FB (ECA-FBD) is proposed. Compared with the popular ECA and ECA-B methods, the proposed ECA-FB and ECA-FBD obtained superior complex clutter suppression and slow-moving target detection performance with lower computational complexity. A series of simulation and experimental results are provided to demonstrate the validity of the proposed methods.

2021 ◽  
Vol 13 (4) ◽  
pp. 701 ◽  
Author(s):  
Binbin Wang ◽  
Hao Cha ◽  
Zibo Zhou ◽  
Bin Tian

Clutter cancellation and long time integration are two vital steps for global navigation satellite system (GNSS)-based bistatic radar target detection. The former eliminates the influence of direct and multipath signals on the target detection performance, and the latter improves the radar detection range. In this paper, the extensive cancellation algorithm (ECA), which projects the surveillance channel signal in the subspace orthogonal to the clutter subspace, is first applied in GNSS-based bistatic radar. As a result, the clutter has been removed from the surveillance channel effectively. For long time integration, a modified version of the Fourier transform (FT), called long-time integration Fourier transform (LIFT), is proposed to obtain a high coherent processing gain. Relative acceleration (RA) is defined to describe the Doppler variation results from the motion of the target and long integration time. With the estimated RA, the Doppler frequency shift compensation is carried out in the LIFT. This method achieves a better and robust detection performance when comparing with the traditional coherent integration method. The simulation results demonstrate the effectiveness and advantages of the proposed processing method.


2021 ◽  
pp. 1-1
Author(s):  
Zhixin Zhao ◽  
Xin Chen ◽  
Bo Li ◽  
Yuhao Wang ◽  
Qiegen Liu

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Tao Ying ◽  
Xuebao Wang ◽  
Wei Tian ◽  
Cheng Zhou

This paper examines the problem of cancellation of cochannel interference (CCI) present in the same frequency channel as the signal of interest, which may bring a reduction in the performance of target detection, in passive bistatic radar. We propose a novel approach based on probabilistic latent component analysis for CCI removal. The highlight is that removing CCI is considered as reconstruction, and extraction of Doppler-shifted and time-delayed replicas of the reference signal exploited fully as training data. The results of the simulation show that the developed method is effective.


Author(s):  
Yongsheng Zhao ◽  
Dexiu Hu ◽  
Chuang Zhao ◽  
Yongjun Zhao ◽  
Zhixin Liu

Sign in / Sign up

Export Citation Format

Share Document