scholarly journals Saliency-Guided Remote Sensing Image Super-Resolution

2021 ◽  
Vol 13 (24) ◽  
pp. 5144
Author(s):  
Baodi Liu ◽  
Lifei Zhao ◽  
Jiaoyue Li ◽  
Hengle Zhao ◽  
Weifeng Liu ◽  
...  

Deep learning has recently attracted extensive attention and developed significantly in remote sensing image super-resolution. Although remote sensing images are composed of various scenes, most existing methods consider each part equally. These methods ignore the salient objects (e.g., buildings, airplanes, and vehicles) that have more complex structures and require more attention in recovery processing. This paper proposes a saliency-guided remote sensing image super-resolution (SG-GAN) method to alleviate the above issue while maintaining the merits of GAN-based methods for the generation of perceptual-pleasant details. More specifically, we exploit the salient maps of images to guide the recovery in two aspects: On the one hand, the saliency detection network in SG-GAN learns more high-resolution saliency maps to provide additional structure priors. On the other hand, the well-designed saliency loss imposes a second-order restriction on the super-resolution process, which helps SG-GAN concentrate more on the salient objects of remote sensing images. Experimental results show that SG-GAN achieves competitive PSNR and SSIM compared with the advanced super-resolution methods. Visual results demonstrate our superiority in restoring structures while generating remote sensing super-resolution images.

2019 ◽  
Vol 11 (15) ◽  
pp. 1817 ◽  
Author(s):  
Jun Gu ◽  
Xian Sun ◽  
Yue Zhang ◽  
Kun Fu ◽  
Lei Wang

Recently, deep convolutional neural networks (DCNN) have obtained promising results in single image super-resolution (SISR) of remote sensing images. Due to the high complexity of remote sensing image distribution, most of the existing methods are not good enough for remote sensing image super-resolution. Enhancing the representation ability of the network is one of the critical factors to improve remote sensing image super-resolution performance. To address this problem, we propose a new SISR algorithm called a Deep Residual Squeeze and Excitation Network (DRSEN). Specifically, we propose a residual squeeze and excitation block (RSEB) as a building block in DRSEN. The RSEB fuses the input and its internal features of current block, and models the interdependencies and relationships between channels to enhance the representation power. At the same time, we improve the up-sampling module and the global residual pathway in the network to reduce the parameters of the network. Experiments on two public remote sensing datasets (UC Merced and NWPU-RESISC45) show that our DRSEN achieves better accuracy and visual improvements against most state-of-the-art methods. The DRSEN is beneficial for the progress in the remote sensing images super-resolution field.


2021 ◽  
Vol 13 (19) ◽  
pp. 3835
Author(s):  
Wenzong Jiang ◽  
Lifei Zhao ◽  
Yanjiang Wang ◽  
Weifeng Liu ◽  
Baodi Liu

In recent years, the application of deep learning has achieved a huge leap in the performance of remote sensing image super-resolution (SR). However, most of the existing SR methods employ bicubic downsampling of high-resolution (HR) images to obtain low-resolution (LR) images and use the obtained LR and HR images as training pairs. This supervised method that uses ideal kernel (bicubic) downsampled images to train the network will significantly degrade performance when used in realistic LR remote sensing images, usually resulting in blurry images. The main reason is that the degradation process of real remote sensing images is more complicated. The training data cannot reflect the SR problem of real remote sensing images. Inspired by the self-supervised methods, this paper proposes a cross-dimension attention guided self-supervised remote sensing single-image super-resolution method (CASSISR). It does not require pre-training on a dataset, only utilizes the internal information reproducibility of a single image, and uses the lower-resolution image downsampled from the input image to train the cross-dimension attention network (CDAN). The cross-dimension attention module (CDAM) selectively captures more useful internal duplicate information by modeling the interdependence of channel and spatial features and jointly learning their weights. The proposed CASSISR adapts well to real remote sensing image SR tasks. A large number of experiments show that CASSISR has achieved superior performance to current state-of-the-art methods.


Sensor Review ◽  
2019 ◽  
Vol 39 (5) ◽  
pp. 629-635 ◽  
Author(s):  
Haiqing He ◽  
Ting Chen ◽  
Minqiang Chen ◽  
Dajun Li ◽  
Penggen Cheng

Purpose This paper aims to present a novel approach of image super-resolution based on deep–shallow cascaded convolutional neural networks for reconstructing a clear and high-resolution (HR) remote sensing image from a low-resolution (LR) input. Design/methodology/approach The proposed approach directly learns the residuals and mapping between simulated LR and their corresponding HR remote sensing images based on deep and shallow end-to-end convolutional networks instead of assuming any specific restored models. Extra max-pooling and up-sampling are used to achieve a multiscale space by concatenating low- and high-level feature maps, and an HR image is generated by combining LR input and the residual image. This model ensures a strong response to spatially local input patterns by using a large filter and cascaded small filters. The authors adopt a strategy based on epochs to update the learning rate for boosting convergence speed. Findings The proposed deep network is trained to reconstruct high-quality images for low-quality inputs through a simulated dataset, which is generated with Set5, Set14, Berkeley Segmentation Data set and remote sensing images. Experimental results demonstrate that this model considerably enhances remote sensing images in terms of spatial detail and spectral fidelity and outperforms state-of-the-art SR methods in terms of peak signal-to-noise ratio, structural similarity and visual assessment. Originality/value The proposed method can reconstruct an HR remote sensing image from an LR input and significantly improve the quality of remote sensing images in terms of spatial detail and fidelity.


2021 ◽  
Vol 13 (9) ◽  
pp. 1854
Author(s):  
Syed Muhammad Arsalan Bashir ◽  
Yi Wang

This paper deals with detecting small objects in remote sensing images from satellites or any aerial vehicle by utilizing the concept of image super-resolution for image resolution enhancement using a deep-learning-based detection method. This paper provides a rationale for image super-resolution for small objects by improving the current super-resolution (SR) framework by incorporating a cyclic generative adversarial network (GAN) and residual feature aggregation (RFA) to improve detection performance. The novelty of the method is threefold: first, a framework is proposed, independent of the final object detector used in research, i.e., YOLOv3 could be replaced with Faster R-CNN or any object detector to perform object detection; second, a residual feature aggregation network was used in the generator, which significantly improved the detection performance as the RFA network detected complex features; and third, the whole network was transformed into a cyclic GAN. The image super-resolution cyclic GAN with RFA and YOLO as the detection network is termed as SRCGAN-RFA-YOLO, which is compared with the detection accuracies of other methods. Rigorous experiments on both satellite images and aerial images (ISPRS Potsdam, VAID, and Draper Satellite Image Chronology datasets) were performed, and the results showed that the detection performance increased by using super-resolution methods for spatial resolution enhancement; for an IoU of 0.10, AP of 0.7867 was achieved for a scale factor of 16.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Liang Huang ◽  
Qiuzhi Peng ◽  
Xueqin Yu

In order to improve the change detection accuracy of multitemporal high spatial resolution remote-sensing (HSRRS) images, a change detection method of multitemporal remote-sensing images based on saliency detection and spatial intuitionistic fuzzy C-means (SIFCM) clustering is proposed. Firstly, the cluster-based saliency cue method is used to obtain the saliency maps of two temporal remote-sensing images; then, the saliency difference is obtained by subtracting the saliency maps of two temporal remote-sensing images; finally, the SIFCM clustering algorithm is used to classify the saliency difference image to obtain the change regions and unchange regions. Two data sets of multitemporal high spatial resolution remote-sensing images are selected as the experimental data. The detection accuracy of the proposed method is 96.17% and 97.89%. The results show that the proposed method is a feasible and better performance multitemporal remote-sensing image change detection method.


Sign in / Sign up

Export Citation Format

Share Document