scholarly journals BiFDANet: Unsupervised Bidirectional Domain Adaptation for Semantic Segmentation of Remote Sensing Images

2022 ◽  
Vol 14 (1) ◽  
pp. 190
Author(s):  
Yuxiang Cai ◽  
Yingchun Yang ◽  
Qiyi Zheng ◽  
Zhengwei Shen ◽  
Yongheng Shang ◽  
...  

When segmenting massive amounts of remote sensing images collected from different satellites or geographic locations (cities), the pre-trained deep learning models cannot always output satisfactory predictions. To deal with this issue, domain adaptation has been widely utilized to enhance the generalization abilities of the segmentation models. Most of the existing domain adaptation methods, which based on image-to-image translation, firstly transfer the source images to the pseudo-target images, adapt the classifier from the source domain to the target domain. However, these unidirectional methods suffer from the following two limitations: (1) they do not consider the inverse procedure and they cannot fully take advantage of the information from the other domain, which is also beneficial, as confirmed by our experiments; (2) these methods may fail in the cases where transferring the source images to the pseudo-target images is difficult. In this paper, in order to solve these problems, we propose a novel framework BiFDANet for unsupervised bidirectional domain adaptation in the semantic segmentation of remote sensing images. It optimizes the segmentation models in two opposite directions. In the source-to-target direction, BiFDANet learns to transfer the source images to the pseudo-target images and adapts the classifier to the target domain. In the opposite direction, BiFDANet transfers the target images to the pseudo-source images and optimizes the source classifier. At test stage, we make the best of the source classifier and the target classifier, which complement each other with a simple linear combination method, further improving the performance of our BiFDANet. Furthermore, we propose a new bidirectional semantic consistency loss for our BiFDANet to maintain the semantic consistency during the bidirectional image-to-image translation process. The experiments on two datasets including satellite images and aerial images demonstrate the superiority of our method against existing unidirectional methods.

2020 ◽  
Author(s):  
Matheus B. Pereira ◽  
Jefersson Alex Dos Santos

High-resolution aerial images are usually not accessible or affordable. On the other hand, low-resolution remote sensing data is easily found in public open repositories. The problem is that the low-resolution representation can compromise pattern recognition algorithms, especially semantic segmentation. In this M.Sc. dissertation1 , we design two frameworks in order to evaluate the effectiveness of super-resolution in the semantic segmentation of low-resolution remote sensing images. We carried out an extensive set of experiments on different remote sensing datasets. The results show that super-resolution is effective to improve semantic segmentation performance on low-resolution aerial imagery, outperforming unsupervised interpolation and achieving semantic segmentation results comparable to highresolution data.


Author(s):  
D. Gritzner ◽  
J. Ostermann

Abstract. Modern machine learning, especially deep learning, which is used in a variety of applications, requires a lot of labelled data for model training. Having an insufficient amount of training examples leads to models which do not generalize well to new input instances. This is a particular significant problem for tasks involving aerial images: often training data is only available for a limited geographical area and a narrow time window, thus leading to models which perform poorly in different regions, at different times of day, or during different seasons. Domain adaptation can mitigate this issue by using labelled source domain training examples and unlabeled target domain images to train a model which performs well on both domains. Modern adversarial domain adaptation approaches use unpaired data. We propose using pairs of semantically similar images, i.e., whose segmentations are accurate predictions of each other, for improved model performance. In this paper we show that, as an upper limit based on ground truth, using semantically paired aerial images during training almost always increases model performance with an average improvement of 4.2% accuracy and .036 mean intersection-over-union (mIoU). Using a practical estimate of semantic similarity, we still achieve improvements in more than half of all cases, with average improvements of 2.5% accuracy and .017 mIoU in those cases.


2019 ◽  
Vol 11 (11) ◽  
pp. 1369 ◽  
Author(s):  
Bilel Benjdira ◽  
Yakoub Bazi ◽  
Anis Koubaa ◽  
Kais Ouni

Segmenting aerial images is of great potential in surveillance and scene understanding of urban areas. It provides a mean for automatic reporting of the different events that happen in inhabited areas. This remarkably promotes public safety and traffic management applications. After the wide adoption of convolutional neural networks methods, the accuracy of semantic segmentation algorithms could easily surpass 80% if a robust dataset is provided. Despite this success, the deployment of a pretrained segmentation model to survey a new city that is not included in the training set significantly decreases accuracy. This is due to the domain shift between the source dataset on which the model is trained and the new target domain of the new city images. In this paper, we address this issue and consider the challenge of domain adaptation in semantic segmentation of aerial images. We designed an algorithm that reduces the domain shift impact using generative adversarial networks (GANs). In the experiments, we tested the proposed methodology on the International Society for Photogrammetry and Remote Sensing (ISPRS) semantic segmentation dataset and found that our method improves overall accuracy from 35% to 52% when passing from the Potsdam domain (considered as source domain) to the Vaihingen domain (considered as target domain). In addition, the method allows efficiently recovering the inverted classes due to sensor variation. In particular, it improves the average segmentation accuracy of the inverted classes due to sensor variation from 14% to 61%.


2021 ◽  
Vol 13 (21) ◽  
pp. 4386
Author(s):  
Ying Chen ◽  
Qi Liu ◽  
Teng Wang ◽  
Bin Wang ◽  
Xiaoliang Meng

In recent years, object detection has shown excellent results on a large number of annotated data, but when there is a discrepancy between the annotated data and the real test data, the performance of the trained object detection model is often degraded when it is directly transferred to the real test dataset. Compared with natural images, remote sensing images have great differences in appearance and quality. Traditional methods need to re-label all image data before interpretation, which will consume a lot of manpower and time. Therefore, it is of practical significance to study the Cross-Domain Adaptation Object Detection (CDAOD) of remote sensing images. To solve the above problems, our paper proposes a Rotation-Invariant and Relation-Aware (RIRA) CDAOD network. We trained the network at the image-level and the prototype-level based on a relation aware graph to align the feature distribution and added the rotation-invariant regularizer to deal with the rotation diversity. The Faster R-CNN network was adopted as the backbone framework of the network. We conducted experiments on two typical remote sensing building detection datasets, and set three domain adaptation scenarios: WHU 2012 → WHU 2016, Inria (Chicago) → Inria (Austin), and WHU 2012 → Inria (Austin). [d=Y.C.]The results show that our method can effectively improve the detection effect in the target domain, and outperform competing methods by obtaining optimal results in all three scenarios.The results show that our method can effectively improve the detection effect in the target domain, and in the comparison methods, we get the optimal results in all three scenarios.


2020 ◽  
Vol 12 (18) ◽  
pp. 2910
Author(s):  
Tong Wu ◽  
Yuan Hu ◽  
Ling Peng ◽  
Ruonan Chen

Building extraction from high-resolution remote sensing images plays a vital part in urban planning, safety supervision, geographic databases updates, and some other applications. Several researches are devoted to using convolutional neural network (CNN) to extract buildings from high-resolution satellite/aerial images. There are two major methods, one is the CNN-based semantic segmentation methods, which can not distinguish different objects of the same category and may lead to edge connection. The other one is CNN-based instance segmentation methods, which rely heavily on pre-defined anchors, and result in the highly sensitive, high computation/storage cost and imbalance between positive and negative samples. Therefore, in this paper, we propose an improved anchor-free instance segmentation method based on CenterMask with spatial and channel attention-guided mechanisms and improved effective backbone network for accurate extraction of buildings in high-resolution remote sensing images. Then we analyze the influence of different parameters and network structure on the performance of the model, and compare the performance for building extraction of Mask R-CNN, Mask Scoring R-CNN, CenterMask, and the improved CenterMask in this paper. Experimental results show that our improved CenterMask method can successfully well-balanced performance in terms of speed and accuracy, which achieves state-of-the-art performance at real-time speed.


2019 ◽  
Vol 11 (17) ◽  
pp. 2008 ◽  
Author(s):  
Qinchen Yang ◽  
Man Liu ◽  
Zhitao Zhang ◽  
Shuqin Yang ◽  
Jifeng Ning ◽  
...  

With increasing consumption, plastic mulch benefits agriculture by promoting crop quality and yield, but the environmental and soil pollution is becoming increasingly serious. Therefore, research on the monitoring of plastic mulched farmland (PMF) has received increasing attention. Plastic mulched farmland in unmanned aerial vehicle (UAV) remote images due to the high resolution, shows a prominent spatial pattern, which brings difficulties to the task of monitoring PMF. In this paper, through a comparison between two deep semantic segmentation methods, SegNet and fully convolutional networks (FCN), and a traditional classification method, Support Vector Machine (SVM), we propose an end-to-end deep-learning method aimed at accurately recognizing PMF for UAV remote sensing images from Hetao Irrigation District, Inner Mongolia, China. After experiments with single-band, three-band and six-band image data, we found that deep semantic segmentation models built via single-band data which only use the texture pattern of PMF can identify it well; for example, SegNet reaching the highest accuracy of 88.68% in a 900 nm band. Furthermore, with three visual bands and six-band data (3 visible bands and 3 near-infrared bands), deep semantic segmentation models combining the texture and spectral features further improve the accuracy of PMF identification, whereas six-band data obtains an optimal performance for FCN and SegNet. In addition, deep semantic segmentation methods, FCN and SegNet, due to their strong feature extraction capability and direct pixel classification, clearly outperform the traditional SVM method in precision and speed. Among three classification methods, SegNet model built on three-band and six-band data obtains the optimal average accuracy of 89.62% and 90.6%, respectively. Therefore, the proposed deep semantic segmentation model, when tested against the traditional classification method, provides a promising path for mapping PMF in UAV remote sensing images.


Author(s):  
Yuansheng Hua ◽  
Diego Marcos ◽  
Lichao Mou ◽  
Xiao Xiang Zhu ◽  
Devis Tuia

2021 ◽  
Vol 26 (1) ◽  
pp. 200-215
Author(s):  
Muhammad Alam ◽  
Jian-Feng Wang ◽  
Cong Guangpei ◽  
LV Yunrong ◽  
Yuanfang Chen

AbstractIn recent years, the success of deep learning in natural scene image processing boosted its application in the analysis of remote sensing images. In this paper, we applied Convolutional Neural Networks (CNN) on the semantic segmentation of remote sensing images. We improve the Encoder- Decoder CNN structure SegNet with index pooling and U-net to make them suitable for multi-targets semantic segmentation of remote sensing images. The results show that these two models have their own advantages and disadvantages on the segmentation of different objects. In addition, we propose an integrated algorithm that integrates these two models. Experimental results show that the presented integrated algorithm can exploite the advantages of both the models for multi-target segmentation and achieve a better segmentation compared to these two models.


Sign in / Sign up

Export Citation Format

Share Document