scholarly journals Unmanned Aerial Vehicle Systems for Remote Estimation of Flooded Areas Based on Complex Image Processing

Sensors ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 446 ◽  
Author(s):  
Dan Popescu ◽  
Loretta Ichim ◽  
Florin Stoican
2016 ◽  
Vol 8 (5) ◽  
pp. 416 ◽  
Author(s):  
Shenghui Fang ◽  
Wenchao Tang ◽  
Yi Peng ◽  
Yan Gong ◽  
Can Dai ◽  
...  

2019 ◽  
Vol 27 (2) ◽  
pp. 61-69 ◽  
Author(s):  
Timothy B. Nysetvold ◽  
John L. Salmon

2017 ◽  
Vol 15 (41) ◽  
pp. 9-26
Author(s):  
Andrés Espinal Rojas ◽  
Andrés Arango Espinal ◽  
Luis Ramos ◽  
Jorge Humberto Erazo Aux

This paper describes the development and implementation of a six-pointed Unmanned Aerial Vehicle [UAV] prototype, designed for finding lost people in hard to access areas, using Arduino MultiWii platform. A platform capable of performing a stable flight to identify people through an on-board camera and an image processing algorithm was developed. Although the use of UAV represents a low cost and quick response –in terms of displacement– solution, capable to prevent or reduce the number of deaths of lost people in away places, also represents a technological challenge, since the recognition of objects from an aerial view is difficult, due to the distance of the UAV to the objective, the UAV’s position and its constant movement. The solution proposed implements an aerial device that performs the image capture, wireless transmission and image processing while it is in a controlled and stable flight.


2020 ◽  
Author(s):  
Lucas Rossi ◽  
André Backes ◽  
Jefferson Souza

The detection of Aedes aegypti mosquito is essential in the prevention process of serious diseases such as dengue, yellow fever, chikungunya, and Zika virus. Common approaches consist of surveillance agents who need to enter residences to find and eliminate these outbreaks, but often they are unable to do this work due to the absence or resistance of the resident. This paper proposes an automatic system that uses aerial images obtained through a camera coupled from an Unmanned Aerial Vehicle (UAV) to identify rain gutters from a shed that may be mosquitoes’ foci. We use Digital Image Processing (DIP) techniques to differentiate the objects that may or may not be those foci of the mosquito-breeding. The experimental results show that the system is capable of automatically detecting the appropriately mosquito-breeding location.


Sign in / Sign up

Export Citation Format

Share Document