scholarly journals A Gyroscope Bias Estimation Algorithm Based on Map Specific Information

Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2534 ◽  
Author(s):  
Tian Tan ◽  
Ao Peng ◽  
Junjun Huang ◽  
Lingxiang Zheng ◽  
Gang Ou

In an inertial navigation system, especially in a pedestrian dead-reckoning system, gyroscope bias can demonstrably reduce positioning accuracy. A novel gyroscope bias estimation algorithm is proposed, which estimates the bias of a gyroscope under any set of angle observations. Moreover, a method for obtaining Euler angles using map corridor information is proposed. The heading information obtained from a map is used to estimate the bias, and the estimated bias is used to correct the trajectories. Experimental results show that it is feasible for the algorithm to estimate the bias of the gyroscope.

2020 ◽  
Vol 10 (6) ◽  
pp. 2176
Author(s):  
Gang Wu ◽  
Xinqiu Fang ◽  
Lei Zhang ◽  
Minfu Liang ◽  
Jiakun Lv ◽  
...  

Automation and intelligent coal mining comprise the most important fields in coal mining technology research. The key to automation and intelligent coal mining is the automated mining of the working face, and accurate positioning of the shearer is one of the most important technologies in the automated mining process. However, significant defects in non-inertial navigation system (INS)-based methods have led to low positioning accuracy. In this paper, we propose a new shearer positioning technology to further improve the positioning accuracy of the shearer and monitor the shearer position in real time. The shearer positioning system proposed is based on the strapdown inertial navigation system (SINS). We conducted shearer positioning experiments with gyroscopes, accelerometers, and other inertial navigation instruments. The experimental results are thoroughly studied on the basis of error compensation techniques such as inertial instrument zero bias compensation and Kalman filter compensation. Compared with traditional shearer positioning technology, the experimental results show that the shearer positioning system based on SINS can achieve more accurate positioning of the shearer and can accurately reflect the running characteristics of the shearer working the mining face.


2013 ◽  
Vol 437 ◽  
pp. 870-875 ◽  
Author(s):  
Zhong Liang Deng ◽  
Fei Peng Xie ◽  
Yan Pei Yu ◽  
Xiao Hong Zhao ◽  
Zhuang Yuan

In order to solve the discontinuity of navigation and positioning in indoor signal coverage blind areas, and false region judgment caused by positioning error, an integrated method combining Wireless Positioning System (WPS), Pedestrian Dead Reckoning (PDR) and Map Matching (MM) is presented in this paper. By using the combination of Kalman filtered WPS and PDR information, inertial information and geographic information, pedestrian position could be evaluated. Through experiment, this method effectively increased positioning accuracy of the system as well as greatly improved the user experience.


Author(s):  
X. Sun ◽  
K. Wu ◽  
Y. Li ◽  
K. Di

In this research, we develop a Zero Velocity Update (ZUPT) based method for astronaut navigation and evaluate its performance under different locomotion patterns. In this ZUPT based dead-reckoning, the position drift of IMU is corrected using the constraint that the instantaneous velocity is zero when static state is automatically detected. A series of field experiments have been performed on terrains of different slopes and hardness in an urban park and a desert under different locomotion patterns, such as walking and hopping. The experimental results show that the positioning accuracy of the developed ZUPT based dead-reckoning is 1.5 %–2.3 % under different locomotion patterns, demonstrating the potential of ZUPT for astronaut navigation.


Author(s):  
E. Gulo ◽  
G. Sohn ◽  
A. Afnan

<p><strong>Abstract.</strong> With the increasing number and usage of mobile devices in people’s daily life, indoor positioning has attracted a lot attention from both academia and industry for the purpose of providing location-aware services. This work proposes an indoor positioning system, primarily based on WLAN fingerprint matching, that includes various minor improvements to improve the positioning accuracy of the algorithm, as well as improve the quality and reduce the collection time of the reference fingerprints. In addition, a novel Path Evaluation and Retroactive Adjustment module is employed; it intends to improve the positioning accuracy of the system in a similar fashion to a Pedestrian Dead Reckoning implemented along with WLAN Fingerprint Matching in a Sensor Fusion system. The benefit of this approach being that it avoids the requirement of inertial sensor data, as well as its intensive computation and power use, while providing a similar accuracy improvement to Pedestrian Dead Reckoning. Our experimental results demonstrate that this may be a viable approach for positioning using mobile devices in an indoor environment.</p>


Sign in / Sign up

Export Citation Format

Share Document