scholarly journals An Intelligent Smart Plug with Shared Knowledge Capabilities

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3961 ◽  
Author(s):  
Luis Gomes ◽  
Filipe Sousa ◽  
Zita Vale

The massive dissemination of smart devices in current markets provides innovative technologies that can be used in energy management systems. Particularly, smart plugs enable efficient remote monitoring and control capabilities of electrical resources at a low cost. However, smart plugs, besides their enabling capabilities, are not able to acquire and communicate information regarding the resource’s context. This paper proposes the EnAPlug, a new environmental awareness smart plug with knowledge capabilities concerning the context of where and how users utilize a controllable resource. This paper will focus on the abilities to learn and to share knowledge between different EnAPlugs. The EnAPlug is tested in two different case studies where user habits and consumption profiles are learned. A case study for distributed resource optimization is also shown, where a central heater is optimized according to the shared knowledge of five EnAPlugs.

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1647 ◽  
Author(s):  
Luis Gomes ◽  
Filipe Sousa ◽  
Tiago Pinto ◽  
Zita Vale

Smart home devices currently available on the market can be used for remote monitoring and control. Energy management systems can take advantage of this and deploy solutions that can be implemented in our homes. One of the big enablers is smart plugs that allow the control of electrical resources while providing a retrofitting solution, hence avoiding the need for replacing the electrical devices. However, current so-called smart plugs lack the ability to understand the environment they are in, or the electrical appliance/resource they are controlling. This paper applies environment awareness smart plugs (EnAPlugs) able to provide enough data for energy management systems or act on its own, via a multi-agent approach. A case study is presented, which shows the application of the proposed approach in a house where 17 EnAPlugs are deployed. Results show the ability to shared knowledge and perform individual resource optimizations. This paper evidences that by integrating artificial intelligence on devices, energy advantages can be observed and used in favor of users, providing comfort and savings.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 936 ◽  
Author(s):  
Radu L. Sumalan ◽  
Nicoleta Stroia ◽  
Daniel Moga ◽  
Vlad Muresan ◽  
Alexandru Lodin ◽  
...  

This paper presents the development of a cost-effective automatic system for greenhouse environment control. The architectural and functional features were analyzed in the context of the realization of a controlled-environment agricultural system through all its stages: installation, deployment of the software, integration, maintenance, crop control strategy setup and daily operation of the grower. The proposed embedded platform provides remote monitoring and control of the greenhouse environment and is implemented as a distributed sensing and control network integrating wired and wireless nodes. All nodes were built with low-cost, low-power microcontrollers. The key issues that were addressed include the energy-efficient control, the robustness of the distributed control network to faults and a low-cost hardware implementation. The translation of the supervisory growth-planning information to the operational (control network) level is achieved through a specific architecture residing on a crop planning module (CPM) and an interfacing block (IB). A suite of software applications with flows and interfaces developed from a grower-centric perspective was designed and implemented on a multi-tier architecture. The operation of the platform was validated through implementation of sensing and control nodes, application of software for configuration and visualization, and deployment in typical greenhouses.


2011 ◽  
Vol 268-270 ◽  
pp. 772-780 ◽  
Author(s):  
Hsiung Cheng Lin ◽  
Liang Yih Liu ◽  
Kuo Hung Pai

Since the past years, the microprocessor (8051) has been still playing an indispensable role as a controller in industry applications because of fast executing process, low-cost, small size and low power consumption, etc. It, however, usually lacks of long distance transmission, graphical interface and vision. On the other hand, VB is now a very popular software package for graphical interface design due to easy exploring and low price. Combining both superiorities as above, this paper develops a remote visional microprocessor-based monitoring and control platform using VB graphical interface. The nearby PC (server) can collect real-time sensing signals from the 8051 through RS232 and transmit it to remote PCs (client) for on line monitoring mechanism via Internet. Also, the client can send the control signals to the server and thus control the 8051. The real-time case study for feeding care in the Pet House is provided to verify its well performance and remote Web-based capability in term of fast, simple and robust performance.


2021 ◽  
pp. 1-14
Author(s):  
Seyed Taha Hossein Mortaji ◽  
Siamak Noori ◽  
Morteza Bagherpour

Earned value management is well-known as the most efficient method of project monitoring and control providing relatively reliable information about the project performance. However, this method requires accurate estimates of the progress of project activities, which are always associated with uncertainties that, if ignored or not addressed well, lead to incorrect results. To address this issue, the application of multi-valued logic, in particular fuzzy logic, in earned value management has recently attracted a lot of attention both in practice and research. This paper introduces directed earned value management (DEVM) in which ordered fuzzy numbers are used to express the so-called uncertainties as well as to capture more information about the trend of the project progress. To evaluate the performance of the proposed method, several numerical examples and a case study are presented. The results reveal that compared to the existing methods, DEVM has a lower computational complexity. Also, it doesn’t suffer from the overestimation effect and as a result, it has a higher ability to express project-specific dynamics. In sum, the proposed method allows project managers to make informed decisions that lead to taking preventive and corrective actions promptly and at a lower cost.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3515
Author(s):  
Sung-Ho Sim ◽  
Yoon-Su Jeong

As the development of IoT technologies has progressed rapidly recently, most IoT data are focused on monitoring and control to process IoT data, but the cost of collecting and linking various IoT data increases, requiring the ability to proactively integrate and analyze collected IoT data so that cloud servers (data centers) can process smartly. In this paper, we propose a blockchain-based IoT big data integrity verification technique to ensure the safety of the Third Party Auditor (TPA), which has a role in auditing the integrity of AIoT data. The proposed technique aims to minimize IoT information loss by multiple blockchain groupings of information and signature keys from IoT devices. The proposed technique allows IoT information to be effectively guaranteed the integrity of AIoT data by linking hash values designated as arbitrary, constant-size blocks with previous blocks in hierarchical chains. The proposed technique performs synchronization using location information between the central server and IoT devices to manage the cost of the integrity of IoT information at low cost. In order to easily control a large number of locations of IoT devices, we perform cross-distributed and blockchain linkage processing under constant rules to improve the load and throughput generated by IoT devices.


Sign in / Sign up

Export Citation Format

Share Document