scholarly journals Underwater Optical Imaging for Automotive Wading

Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4476 ◽  
Author(s):  
Aleksandr Bystrov ◽  
Edward Hoare ◽  
Marina Gashinova ◽  
Mikhail Cherniakov ◽  
Thuy-Yung Tran

An underwater imaging system was investigated for automotive use in highly scattered underwater environments. The purpose of the system is the driver’s information about hidden obstacles, such as stones, driftwood, open sewer hatches. A comparison of various underwater vision methods was presented by the way they are implemented, the range reached, and the cost of implementation. It has been experimentally shown that a conventional active system can provide a maximum visibility range of up to three light attenuation lengths. In most practical cases of turbid waters during floods, this corresponds to distances of about 1 meter. From the presented analysis it follows that advanced extended range imaging methods allow increasing of the visibility range up to 2 meters.

2021 ◽  
Author(s):  
◽  
Adrian Peter Paul Jongenelen

<p>This thesis documents the development of a time-of-flight (ToF) camera suitable for autonomous mobile robotics applications. By measuring the round trip time of emitted light to and from objects in the scene, the system is capable of simultaneous full-field range imaging. This is achieved by projecting amplitude modulated continuous wave (AMCW) light onto the scene, and recording the reflection using an image sensor array with a high-speed shutter amplitude modulated at the same frequency (of the order of tens of MHz). The effect is to encode the phase delay of the reflected light as a change in pixel intensity, which is then interpreted as distance. A full field range imaging system has been constructed based on the PMD Technologies PMD19k image sensor, where the high-speed shuttering mechanism is builtin to the integrated circuit. This produces a system that is considerably more compact and power efficient than previous iterations that employed an image intensifier to provide sensor modulation. The new system has comparable performance to commercially available systems in terms of distance measurement precision and accuracy, but is much more flexible with regards to its operating parameters. All of the operating parameters, including the image integration time, sensor modulation phase offset and modulation frequency can be changed in realtime either manually or automatically through software. This highly configurable system serves as an excellent platform for research into novel range imaging techniques. One promising technique is the utilisation of measurements using multiple modulation frequencies in order to maximise precision over an extended operating range. Each measurement gives an independent estimate of the distance with limited range depending on the modulation frequency. These are combined to give a measurement with extended maximum range using a novel algorithm based on the New Chinese Remainder Theorem. A theoretical model for the measurement precision and accuracy of the new algorithm is presented and verified with experimental results. All distance image processing is performed on a per-pixel basis in real-time using a Field Programmable Gate Array (FPGA). An efficient hardware implementation of the phase determination algorithm for calculating distance is investigated. The limiting resource for such an implementation is random access memory (RAM), and a detailed analysis of the trade-off between this resource and measurement precision is also presented.</p>


1994 ◽  
Vol 45 (5) ◽  
pp. 847 ◽  
Author(s):  
BE Sherman ◽  
IT Webster

A computer model was used to explore the relationship between buoyancy and the light-limited growth of phytoplankton in very turbid waters. The model simulates the potential growth of phytoplankton as a function of flotation speed, using field observations of photosynthetically active radiation, wind speed, surface-layer thickness (from water-column temperature data), and light attenuation made at Rushy Billabong on the River Murray from 28 November 1991 to 26 March 1992. A unique feature of the model is the simulation of the development and dispersal of surface scums as a function of wind speed. Under nutrient-replete conditions, the model predicted that phytoplankton with a flotation speed of 1-10 m day-1 (typical of Anabaena flos-aquae and Microcystis aeruginosa) would grow up to four times faster than would neutrally buoyant phytoplankton with the same maximum specific growth rate. In the shallow system modelled, high flotation speeds allowed a large proportion of the total population to rise into the euphotic zone shortly after the onset of stratification each day. Surface scums played an important role in maintaining the more buoyant phytoplankton populations close to the water surface. Under the very turbid conditions in the billabong (100 nephelometric turbidity units), self-shading became significant only when the mean chlorophyll concentration in the water column approached 100 mg chla m-3.


2019 ◽  
Vol 8 (6) ◽  
pp. 461-467
Author(s):  
Thomas Scholz ◽  
Martin Laurenzis ◽  
Frank Christnacher

Abstract Underwater laser-based imaging systems and data-processing techniques matured during the past decade. Active imaging systems can, nowadays, be integrated into platforms like remote-operated vehicles (ROV) or autonomous underwater vehicles (AUV). This article gives an overview of different civil and naval applications in underwater imaging with respect to underwater laser scanning (ULS) and laser gated viewing (LGV). Special emphasis has to be given to the environmental conditions, for example, the influence of the local and seasonal dependence of the turbidity with regard to the optical underwater channel. On the basis of tank and sea experiments, advanced techniques for 3D laser oblique scanning (LOS) and possibilities of contrast enhancements for gated viewing are presented.


Sign in / Sign up

Export Citation Format

Share Document