scholarly journals Quantitative high-resolution observations of soil water dynamics in a complicated architecture using time-lapse ground-penetrating radar

2015 ◽  
Vol 19 (3) ◽  
pp. 1125-1139 ◽  
Author(s):  
P. Klenk ◽  
S. Jaumann ◽  
K. Roth

Abstract. High-resolution time-lapse ground-penetrating radar (GPR) observations of advancing and retreating water tables can yield a wealth of information about near-surface water content dynamics. In this study, we present and analyze a series of imbibition, drainage and infiltration experiments that have been carried out at our artificial ASSESS test site and observed with surface-based GPR. The test site features a complicated but known subsurface architecture constructed with three different kinds of sand. It allows the study of soil water dynamics with GPR under a wide range of different conditions. Here, we assess in particular (i) the feasibility of monitoring the dynamic shape of the capillary fringe reflection and (ii) the relative precision of monitoring soil water dynamics averaged over the whole vertical extent by evaluating the bottom reflection. The phenomenology of the GPR response of a dynamically changing capillary fringe is developed from a soil physical point of view. We then explain experimentally observed phenomena based on numerical simulations of both the water content dynamics and the expected GPR response.

2014 ◽  
Vol 11 (11) ◽  
pp. 12365-12404
Author(s):  
P. Klenk ◽  
S. Jaumann ◽  
K. Roth

Abstract. High-resolution time-lapse Ground-Penetrating Radar (GPR) observations of advancing and retreating water tables can yield a wealth of information about near-surface water content dynamics. In this study, we present and analyze a series of imbibition, drainage and infiltration experiments which have been carried out at our artificial ASSESS test site and observed with surface based GPR. The test site features a complicated but known subsurface architecture constructed with three different kinds of sand. It allows studying soil water dynamics with GPR under a wide range of different conditions. Here, we assess in particular (i) the accurate determination of soil water dynamics averaged over the whole vertical extent by evaluating the bottom reflection and (ii) the feasibility of monitoring the dynamic shape of the capillary fringe reflection. The phenomenology of the GPR response of a dynamically changing capillary fringe is developed from a soil physical point of view. We then explain experimentally observed phenomena based on numerical simulations of both the water content dynamics and the expected GPR response.


2021 ◽  
Author(s):  
Qichen Li ◽  
Toshiaki Sugihara ◽  
Sakae Shibusawa ◽  
Minzan Li

Abstract BackgroundSubsurface irrigation has been confirmed to have high water use efficiency due to it irrigating only the crop root zone. Hydrotropism allows roots to grow towards higher water content areas for drought avoidance, which has research interests in recent years. However, most hydrotropism studies focused on a single root and were conducted in air or agar systems. The performance of hydrotropism in subsurface irrigation is not clear. ResultsWe developed a method to observe and analyze hydrotropism in soil under water-saving cultivation. A wet zone was produced around the whole root system based on using subsurface irrigation method and micro soil water dynamics were observed using high-resolution soil moisture sensors. This method enabled the observation and analysis of plant water absorption activities and the hydrotropic response of the root system. In the analysis, we first applied a high-pass filter and fast Fourier transform to the soil water dynamics data. The results indicated that the plant’s biological rhythm of photosynthetic activities can be identified from the soil moisture data. We then observed root growth in response to the dynamics of soil water content in the wet zone. We quantified root distribution inside and outside the wet zone and observed the shape of the root system from the cross-section of the wet zone. The results showed that the root hydrotropic response is not uniform for all roots of an individual plant. ConclusionsThis study verified the feasibility of using high-resolution soil moisture sensors to study root hydrotropic responses in soil during water-saving cultivation. To further evaluate a plant’s hydrotropic ability, it is necessary to use statistical analysis and/or a non-deterministic approach. Future studies may also explore developing an automated experimental system and robotic manipulations for getting steady repeatable observation of hydrotropism in water-saving cultivation.


2012 ◽  
Vol 9 (8) ◽  
pp. 9095-9117 ◽  
Author(s):  
A. Dagenbach ◽  
J. Buchner ◽  
P. Klenk ◽  
K. Roth

Abstract. We show the potential of on-ground Ground-Penetrating Radar (GPR) to identify the hydraulic parameterisation with a semi-quantitative analysis based on numerical simulations of the radar signal. A pumping experiment has been conducted at the ASSESS-GPR site to establish a fluctuating water table, while an on-ground GPR antenna recorded traces over time at a fixed location. These measurements allow to identify and track the capillary fringe in the soil. The typical dynamics of soil water content with a transient water table can be deduced from the recorded radargrams. The characteristic reflections from the capillary fringes in model soils that are described by commonly used hydraulic parameterisations are investigated by numerical simulations. The parameterisations used are: (i) full van Genuchten, (ii) simplified van Genuchten with m = 1 − 1/n and (iii) Brooks-Corey. All three yield characteristically different reflections, which allows the identification of an appropriate parameterisation by comparing to the measured signals. We show that these are not consistent with the commonly used simplified van Genuchten parameterisation with m = 1 − 1/n.


2006 ◽  
Vol 15 (1) ◽  
pp. 99 ◽  
Author(s):  
Joaquim S. Silva ◽  
Francisco C. Rego ◽  
Stefano Mazzoleni

This paper presents a study where soil water content (SW) was measured before and after an experimental fire in a shrubland dominated by Erica scoparia L. in Portugal. Two plots were established: one was kept as a control plot and the other was burned by an experimental fire in June 2001. Measurements were taken before fire (2000), and after fire (2001, 2002, and 2003) at six depths down to 170 cm, from June to December. Measurements before fire allowed comparison of the two plots in terms of the SW differential, using 2000 as a reference. Results for 2001 showed that SW decreased less during the drying season (June–September) and increased more during the wetting season (October–December) in the burned plot than in the control plot. The magnitude of these effects decreased consistently in 2002 and 2003, especially at surface layers. The maximum gain of SW for the total profile in the burned plot was estimated as 105.5 mm in 2001, 70.2 mm in 2002, and 35.6 mm in 2003. The present paper discusses the mechanisms responsible for the increase in SW taking into account the characteristics of the plant community, including the root distribution, and the results of other studies.


2020 ◽  
pp. 014459872097336
Author(s):  
Fan Cui ◽  
Jianyu Ni ◽  
Yunfei Du ◽  
Yuxuan Zhao ◽  
Yingqing Zhou

The determination of quantitative relationship between soil dielectric constant and water content is an important basis for measuring soil water content based on ground penetrating radar (GPR) technology. The calculation of soil volumetric water content using GPR technology is usually based on the classic Topp formula. However, there are large errors between measured values and calculated values when using the formula, and it cannot be flexibly applied to different media. To solve these problems, first, a combination of GPR and shallow drilling is used to calibrate the wave velocity to obtain an accurate dielectric constant. Then, combined with experimental moisture content, the intelligent group algorithm is applied to accurately build mathematical models of the relative dielectric constant and volumetric water content, and the Topp formula is revised for sand and clay media. Compared with the classic Topp formula, the average error rate of sand is decreased by nearly 15.8%, the average error rate of clay is decreased by 31.75%. The calculation accuracy of the formula has been greatly improved. It proves that the revised model is accurate, and at the same time, it proves the rationality of the method of using GPR wave velocity calibration method to accurately calculate the volumetric water content.


Sign in / Sign up

Export Citation Format

Share Document