scholarly journals Positioning, Navigation, and Book Accessing/Returning in an Autonomous Library Robot using Integrated Binocular Vision and QR Code Identification Systems

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 783 ◽  
Author(s):  
Xiaojun Yu ◽  
Zeming Fan ◽  
Hao Wan ◽  
Yuye He ◽  
Junye Du ◽  
...  

With rapid advancements in artificial intelligence and mobile robots, some of the tedious yet simple jobs in modern libraries, like book accessing and returning (BAR) operations that had been fulfilled manually before, could be undertaken by robots. Due to the limited accuracies of the existing positioning and navigation (P&N) technologies and the operational errors accumulated within the robot P&N process, however, most of the current robots are not able to fulfill such high-precision operations. To address these practical issues, we propose, for the first time (to the best of our knowledge), to combine the binocular vision and Quick Response (QR) code identification techniques together to improve the robot P&N accuracies, and then construct an autonomous library robot for high-precision BAR operations. Specifically, the binocular vision system is used for dynamic digital map construction and autonomous P&N, as well as obstacle identification and avoiding functions, while the QR code identification technique is responsible for both robot operational error elimination and robotic arm BAR operation determination. Both simulations and experiments are conducted to verify the effectiveness of the proposed technique combination, as well as the constructed robot. Results show that such a technique combination is effective and robust, and could help to significantly improve the P&N and BAR operation accuracies, while reducing the BAR operation time. The implemented autonomous robot is fully-autonomous and cost-effective, and may find applications far beyond libraries with only sophisticated technologies employed.

2013 ◽  
Vol 427-429 ◽  
pp. 892-896
Author(s):  
Jun Zhou ◽  
Li Jun Zou ◽  
Jun Chao He ◽  
Xiao Pan He

This paper presents a high precision calibration method based on genetic algorithm (GA) for binocular vision system, involving the problems of the GA optimization and the camera modeling. For the GA optimization, both the binary-code and the real-code are considered. The binary-code makes the feasible solution approach to the optimal solution rapidly, and then the accuracy of GA is further improved by using the real-code. Furthermore, in order to improve the convergence rate of the algorithm, the parameters of the two cameras are calculated separately, and the target function is selected by the forward mapping relationship between the world coordinates and the image coordinates. The experimental results demonstrate the effectiveness of the proposed approach.


2020 ◽  
pp. 1-1
Author(s):  
Xiao Zhou ◽  
Jinju Wang ◽  
Xingang Mou ◽  
Xincheng Li ◽  
Liuhui Xie ◽  
...  

2015 ◽  
Vol 734 ◽  
pp. 31-39
Author(s):  
Wen Yang Cai ◽  
Gao Yong Luo

The increasing demand for high precision indoor positioning in many public services has urged research to implement cost-effective systems for a rising number of applications. However, current systems with either short-range positioning technology based on wireless local area networks (WLAN) and ZigBee achieving meter-level accuracy, or ultra-wide band (UWB) and 60 GHz communication technology achieving high precision but with high cost required, could not meet the need of indoor wireless positioning. This paper presents a new method of high precision indoor positioning by autocorrelation phase measurement of spread spectrum signal utilizing carrier frequency lower than 1 GHz, thereby decreasing power emission and hardware cost. The phase measurement is more sensitive to the distance of microwave transmission than timing, thus achieving higher positioning accuracy. Simulation results demonstrate that the proposed positioning method can achieve high precision of less than 1 centimeter decreasing when various noise and interference added.


2014 ◽  
Vol 644-650 ◽  
pp. 207-210
Author(s):  
Shuang Liu ◽  
Xiang Jie Kong ◽  
Ming Cai Shan

Binocular parallax vision system is a kind of computer vision technology. Two cameras on different locations can get two different pictures of same object. The space position of the object can be calculated by the parallax information of two different pictures. The binocular parallax vision technology includes cameras calibration, image processing, and stereo matching analysis. The paper will introduce the inside and outside parameters calibration methods, and combing the traffic applications, designed the calibrating scheme. The parameters that obtained according to the scheme can meet the demands of measuring the vehicle distance. The high precision can meet the needs of intelligent transportation vehicles in a security vehicles spacing survey, which is an effective way for measuring the front car distance.


2020 ◽  
Vol 58 (6) ◽  
pp. 433-438
Author(s):  
Ill-Joo Lee ◽  
Seung-Chan Hong ◽  
Byung-Sam Kim ◽  
Jae-Kyung Cheon

Technologies for pedestrian safety are increasingly emphasized by Automakers in advance of autonomous driving vehicles. A Night Vision System attached behind the front grille can reduce fatal accidents, especially during the nighttime, however, consumers may hesitate to adopt such systems on account of their high price. High-cost Germanium is used in commercial Night Vision System windows, and therefore replacing it with a cheaper infrared window material can lead to a more affordable system. To achieve this, Zinc Sulfide (ZnS), which has about 70% transmittance in the Long-Wavelength Infrared region of 8~12 μm, was selected for the window substrate material. In this study, we designed, fabricated and characterized a single layer cost-effective anti-reflection coating on a ZnS window substrate using Calcium Fluoride (CaF2). The CaF2 coating was fabricated by E-beam evaporation technique, with Quarter wavelength anti-reflection thickness (QAR). It was characterized by FT-IR, SEM and a thermal camera test module. We found that CaF2 both side coated the ZnS window and exhibited about 10~15% higher transmittance than the ZnS window substrate. In addition the CaF2 coating stably bonded to the ZnS substrate without any internal defects. A thermal camera based window test also showed better detection performance with the CaF2 Coating than a bare ZnS substrate window, which was calculated using the output voltage of the microbolometer thermal sensor.


Sign in / Sign up

Export Citation Format

Share Document