scholarly journals A Hybrid Multi-Objective Optimization Model for Vibration Tendency Prediction of Hydropower Generators

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2055 ◽  
Author(s):  
Kai-Bo Zhou ◽  
Jian-Yu Zhang ◽  
Yahui Shan ◽  
Ming-Feng Ge ◽  
Zi-Yue Ge ◽  
...  

The hydropower generator unit (HGU) is a vital piece of equipment for frequency and peaking modulation in the power grid. Its vibration signal contains a wealth of information and status characteristics. Therefore, it is important to predict the vibration tendency of HGUs using collected real-time data, and achieve predictive maintenance as well. In previous studies, most prediction methods have only focused on enhancing the stability or accuracy. However, it is insufficient to consider only one criterion (stability or accuracy) in vibration tendency prediction. In this paper, an intelligence vibration tendency prediction method is proposed to simultaneously achieve strong stability and high accuracy, where vibration signal preprocessing, feature selection and prediction methods are integrated in a multi-objective optimization framework. Firstly, raw sensor signals are decomposed into several modes by empirical wavelet transform (EWT). Subsequently, the refactored modes can be obtained by the sample entropy-based reconstruction strategy. Then, important input features are selected using the Gram-Schmidt orthogonal (GSO) process. Later, the refactored modes are predicted through kernel extreme learning machine (KELM). Finally, the parameters of GSO and KELM are synchronously optimized by the multi-objective salp swarm algorithm. A case study and analysis of the mixed-flow HGU data in China was conducted, and the results show that the proposed model performs better in terms of predicting stability and accuracy.

2014 ◽  
Vol 63 (20) ◽  
pp. 200505
Author(s):  
Chen Han-Ying ◽  
Gao Pu-Zhen ◽  
Tan Si-Chao ◽  
Fu Xue-Kuan

Author(s):  
Haijuan Zhang ◽  
Gai-Ge Wang

AbstractMulti-objective problems in real world are often contradictory and even change over time. As we know, how to find the changing Pareto front quickly and accurately is challenging during the process of solving dynamic multi-objective optimization problems (DMOPs). In addition, most solutions obey different distributions in decision space and the performance of NSGA-III when dealing with DMOPs should be further improved. In this paper, centroid distance is proposed and combined into NSGA-III with transfer learning together for DMOPs, called TC_NSGAIII. Centroid distance-based strategy is regarded as a prediction method to prevent some inappropriate individuals through measuring the distance of the population centroid and reference points. After the distance strategy, transfer learning is used for generating an initial population using the past experience. To verify the effectiveness of our proposed algorithm, NSGAIII, Tr_NSGAIII (NSGA-III combining with transfer learning only), Ce_NSGAIII (NSGA-III combining with centroid distance only), and TC_NSGAIII are compared. Seven state-of-the-art algorithms have been used for comparison on CEC 2015 benchmarks. Besides, transfer learning and centroid distance are regarded as a dynamic strategy, which is incorporated into three static algorithms, and the performance improvement is measured. What’s more, twelve benchmark functions from CEC 2015 and eight sets of parameters in each function are used in our experiments. The experimental results show that the performance of algorithms can be greatly improved through the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document