Multi-Objective Optimization for Flood Interval Prediction Based on Orthogonal Chaotic NSGA-II and Kernel Extreme Learning Machine

2019 ◽  
Vol 33 (14) ◽  
pp. 4731-4748 ◽  
Author(s):  
Tian Peng ◽  
Chu Zhang ◽  
Jianzhong Zhou ◽  
Xin Xia ◽  
Xiaoming Xue
Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1645
Author(s):  
Haoran Zhao ◽  
Sen Guo

The accurate prediction of electricity-heat-cooling-gas loads on the demand side in the integrated energy system (IES) can provide significant reference for multiple energy planning and stable operation of the IES. This paper combines the multi-task learning (MTL) method, the Bootstrap method, the improved Salp Swarm Algorithm (ISSA) and the multi-kernel extreme learning machine (MKELM) method to establish the uncertain interval prediction model of electricity-heat-cooling-gas loads. The ISSA introduces the dynamic inertia weight and chaotic local searching mechanism into the basic SSA to improve the searching speed and avoid falling into local optimum. The MKELM model is established by combining the RBF kernel function and the Poly kernel function to integrate the superior learning ability and generalization ability of the two functions. Based on the established model, weather, calendar information, social–economic factors, and historical load are selected as the input variables. Through empirical analysis and comparison discussion, we can obtain: (1) the prediction results of workday are better than those on holiday. (2) The Bootstrap-ISSA-MKELM based on the MTL method has superior performance than that based on the STL method. (3) Through comparing discussion, we discover the established uncertain interval prediction model has the superior performance in combined electricity-heat-cooling-gas loads prediction.


Author(s):  
Renxiong Liu

Objective: Lithium-ion batteries are important components used in electric automobiles (EVs), fuel cell EVs and other hybrid EVs. Therefore, it is greatly important to discover its remaining useful life (RUL). Methods: In this paper, a battery RUL prediction approach using multiple kernel extreme learning machine (MKELM) is presented. The MKELM’s kernel keeps diversified by consisting multiple kernel functions including Gaussian kernel function, Polynomial kernel function and Sigmoid kernel function, and every kernel function’s weight and parameter are optimized through differential evolution (DE) algorithm. Results : Battery capacity data measured from NASA Ames Prognostics Center are used to demonstrate the prediction procedure of the proposed approach, and the MKELM is compared with other commonly used prediction methods in terms of absolute error, relative accuracy and mean square error. Conclusion: The prediction results prove that the MKELM approach can accurately predict the battery RUL. Furthermore, a compare experiment is executed to validate that the MKELM method is better than other prediction methods in terms of prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document