scholarly journals Aquifer Potential Assessment in Termites Manifested Locales Using Geo-Electrical and Surface Hydraulic Measurement Parameters

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2107 ◽  
Author(s):  
Jamilu Bala Ahmed II ◽  
Biswajeet Pradhan ◽  
Shattri Mansor ◽  
Zainuddin M. Yusoff ◽  
Salamatu Abraham Ekpo

In some parts of tropical Africa, termite mound locations are traditionally used to site groundwater structures mainly in the form of hand-dug wells with high success rates. However, the scientific rationale behind the use of mounds as prospective sites for locating groundwater structures has not been thoroughly investigated. In this paper, locations and structural features of termite mounds were mapped with the aim of determining the aquifer potential beneath termite mounds and comparing the same with adjacent areas, 10 m away. Soil and species sampling, field surveys and laboratory analyses to obtain data on physical, hydraulic and geo-electrical parameters from termite mounds and adjacent control areas followed. The physical and hydraulic measurements demonstrated relatively higher infiltration rates and lower soil water content on mound soils compared with the surrounding areas. To assess the aquifer potential, vertical electrical soundings were conducted on 28 termite mounds sites and adjacent control areas. Three (3) important parameters were assessed to compute potential weights for each Vertical Electrical Sounding (VES) point: Depth to bedrock, aquifer layer resistivity and fresh/fractured bedrock resistivity. These weights were then compared between those of termite mound sites and those from control areas. The result revealed that about 43% of mound sites have greater aquifer potential compared to the surrounding areas, whereas 28.5% of mounds have equal and lower potentials compared with the surrounding areas. The study concludes that termite mounds locations are suitable spots for groundwater prospecting owing to the deeper regolith layer beneath them which suggests that termites either have the ability to locate places with a deeper weathering horizon or are themselves agents of biological weathering. Further studies to check how representative our study area is of other areas with similar termite activities are recommended.


Author(s):  
SashaT. Hart ◽  
Reginaldo A. Bertolo ◽  
Maria S. Agostini ◽  
Roland Feig ◽  
Paulo Lojkasek-Lima ◽  
...  


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Ahmed Babeker Elhag

The geology and hydro-geophysical features can aid in identifying borehole location. The study aims to investigate groundwater aquifers and best location of boreholes in the crystalline basement area of Abu Zabad near El Obeid Southwest, Sudan. The study area is underlain by two aquifers formations from Precambrian age. The oldest units of basement complex of area under investigation consist of metamorphic rocks including gneiss, schist, and quartzite.The geophysical methods electromagnetic (EM) and vertical electrical sounding (VES) surveys showed that best aquifers yield for construction of boreholes are in weathering and fractures formation. The EM results revealed that structural features are significant for groundwater potential and interpretation of the VES data also revealed four geo-electric layers, but generally two distinct lithologic layers, which include Superficial deposit and bedrock-basement respectively. The curves generated from the data revealed H curve and HK curve, and thickness of these layers varies from 15 m to 50 m in the area. The aquifer thickness range from 20 m to 30 m. The study concludes that these techniques are suitable for identifying borehole location in the basement rock in Abu Zabad Area Sudan.



2020 ◽  
Author(s):  
Hella van Asperen ◽  
João Rafael Alves-Oliveira ◽  
Thorsten Warneke ◽  
Bruce Forsberg ◽  
Alessandro Carioca de Araujo ◽  
...  

Abstract. The magnitude of termite methane (CH4) emissions is still an uncertain part of the global CH4 budget and current emission estimates are based on limited field studies. We present in-situ CH4 emission measurements of termite mounds and termite mound sub samples, performed in the Amazon rain forest. Emissions of five termite mounds of the species Neocapritermes brasiliensis were measured by use of a large flux chamber connected to a portable gas analyser, measuring CH4 and CO2. In addition, the emission of mound sub samples was measured, after which termites were counted, so that a termite CH4 and CO2 emission factor could be determined. Mound emissions were found to range between 17.0–34.8 nmol mound−1 s−1 for CH4 and between 1.6–13.5 μmol mound−1 s−1 for CO2. A termite emission factor of 0.32 μmol CH4 gtermite−1 h−1 was found, which is twice as high as the only other reported average value for the Amazon. By combining mound emission measurements with the termite emission factor, colony sizes could be estimated, which were found to range between 50–120 thousand individuals. Estimates were similar to literature values, and we therefore propose that this method can be used as a quick non-intrusive method to estimate termite colony size in the field. The role of termites in the ecosystems CH4 budget was evaluated by use of two approaches. Termite mound emission values were combined with local termite mound density numbers, leading to an estimate of 0.15–0.71 nmol CH4 m−2 s−1 on average emitted by termite mounds. In addition, the termite CH4 emission factor from this study was combined with termite density numbers, resulting in an estimate of termite emitted CH4 of ~1.0 nmol m−2 s−1. Considering the relatively low net CH4 emissions previously measured at this ecosystem, we expect that termites play an important role in the CH4 budget of this Terra Firme ecosystem.



Author(s):  
J.W. Lane ◽  
F.P. Haeni ◽  
Susan Soloyanis ◽  
Gary Placzek ◽  
J.H. Williams ◽  
...  


2019 ◽  
Vol 165 ◽  
pp. 114986 ◽  
Author(s):  
Philipp Wanner ◽  
Ramon Aravena ◽  
Jeremy Fernandes ◽  
Michael BenIsrael ◽  
Elizabeth A. Haack ◽  
...  


2004 ◽  
Vol 20 (3) ◽  
pp. 337-343 ◽  
Author(s):  
John P. Loveridge ◽  
Stein R. Moe

Thirteen termite mounds and 13 similar-sized control plots were surveyed in central Zimbabwe in order to study large mammalian browsing and vegetation characteristics. The mounds supported almost twice as many tree species as the control plots and the woody vegetation was denser on mounds compared with the woodland plots. Species of woody plants were recorded along with the percentage of branches browsed (cumulative browsing score) by black rhino, Diceros bicornis, elephant, Loxodonta africana and other browsers combined. In addition we measured how the cumulative browsing score on three woody plant species, Acacia nilotica, Colophospermum mopane and Dichrostachys cinerea, which were common both on and off mounds, was related to the distance from mound centre. Both black rhino and elephant cumulative browsing scores were significantly higher on the mound plants compared with the woodland plots. Cumulative browsing score was negatively related to distance from the mound centre for Dichrostachys cinerea, Colophospermum mopane and Acacia nilotica. We propose that termite mound construction in miombo woodland contributes to sustaining populations of megaherbivores and perhaps some woody species in these areas.



2014 ◽  
Vol 475 ◽  
pp. 61-70 ◽  
Author(s):  
Jordi Palau ◽  
Massimo Marchesi ◽  
Julie C.C. Chambon ◽  
Ramon Aravena ◽  
Àngels Canals ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document