scholarly journals Handheld Microflow Cytometer Based on a Motorized Smart Pipette, a Microfluidic Cell Concentrator, and a Miniaturized Fluorescence Microscope

Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2761 ◽  
Author(s):  
Byeongyeon Kim ◽  
Dayoung Kang ◽  
Sungyoung Choi

Miniaturizing flow cytometry requires a comprehensive approach to redesigning the conventional fluidic and optical systems to have a small footprint and simple usage and to enable rapid cell analysis. Microfluidic methods have addressed some challenges in limiting the realization of microflow cytometry, but most microfluidics-based flow cytometry techniques still rely on bulky equipment (e.g., high-precision syringe pumps and bench-top microscopes). Here, we describe a comprehensive approach that achieves high-throughput white blood cell (WBC) counting in a portable and handheld manner, thereby allowing the complete miniaturization of flow cytometry. Our approach integrates three major components: a motorized smart pipette for accurate volume metering and controllable liquid pumping, a microfluidic cell concentrator for target cell enrichment, and a miniaturized fluorescence microscope for portable flow cytometric analysis. We first validated the capability of each component by precisely metering various fluid samples and controlling flow rates in a range from 219.5 to 840.5 μL/min, achieving high sample-volume reduction via on-chip WBC enrichment, and successfully counting single WBCs flowing through a region of interrogation. We synergistically combined the three major components to create a handheld, integrated microflow cytometer and operated it with a simple protocol of drawing up a blood sample via pipetting and injecting the sample into the microfluidic concentrator by powering the motorized smart pipette. We then demonstrated the utility of the microflow cytometer as a quality control means for leukoreduced blood products, quantitatively analyzing residual WBCs (rWBCs) in blood samples present at concentrations as low as 0.1 rWBCs/μL. These portable, controllable, high-throughput, and quantitative microflow cytometric technologies provide promising ways of miniaturizing flow cytometry.

1994 ◽  
Vol 40 (1) ◽  
pp. 38-42 ◽  
Author(s):  
L Franke ◽  
E Nugel ◽  
W D Döcke ◽  
T Porstmann

Abstract Determination of percentages of CD4+ and CD8+ T cells from patients with human immunodeficiency virus infection is usually done by flow cytometric analysis. We compared a cell marker ELISA with flow cytometry for quantitation of CD4 and CD8 molecules on T lymphocytes, and correlated the values both with the number of CD4+ and CD8+ T lymphocytes and with clinical data. Results by cell marker ELISA (y) correlated well with those by flow cytometric analysis (x); r = 0.69, P < 0.001 (y = 0.01x + 3.9) for CD4; r = 0.81, P < 0.001 (y = 0.03x + 5.4) for CD8; n = 343. The ELISA detected changes in numbers of CD8 molecules on the cells earlier than flow cytometry recognized changes in CD8+ T-cell counts. The advantages of the ELISA are the small sample volume required (0.5 mL of blood), its internal standardization by a CD4+/CD8+ cell line, and its simple and fast performance. The cell marker ELISA appears to be an efficient alternative to flow cytometry.


2021 ◽  
Vol 118 (12) ◽  
pp. 123701
Author(s):  
Julie Martin-Wortham ◽  
Steffen M. Recktenwald ◽  
Marcelle G. M. Lopes ◽  
Lars Kaestner ◽  
Christian Wagner ◽  
...  

Cell Reports ◽  
2021 ◽  
Vol 34 (10) ◽  
pp. 108824
Author(s):  
Gregor Holzner ◽  
Bogdan Mateescu ◽  
Daniel van Leeuwen ◽  
Gea Cereghetti ◽  
Reinhard Dechant ◽  
...  

2019 ◽  
Vol 97 (8) ◽  
pp. 845-851 ◽  
Author(s):  
Annelisa M. Cornel ◽  
Celina L. Szanto ◽  
Niek P. Til ◽  
Jeroen F. Velzen ◽  
Jaap J. Boelens ◽  
...  

Author(s):  
Julia Gala de Pablo ◽  
Matthew Lindley ◽  
Kotaro Hiramatsu ◽  
Keisuke Goda

2009 ◽  
Vol 2009 ◽  
pp. 1-2
Author(s):  
Raphael Gottardo ◽  
Ryan R. Brinkman ◽  
George Luta ◽  
Matt P. Wand

2000 ◽  
Vol 44 (4) ◽  
pp. 827-834 ◽  
Author(s):  
David J. Novo ◽  
Nancy G. Perlmutter ◽  
Richard H. Hunt ◽  
Howard M. Shapiro

ABSTRACT Although flow cytometry has been used to study antibiotic effects on bacterial membrane potential (MP) and membrane permeability, flow cytometric results are not always well correlated to changes in bacterial counts. Using new, precise techniques, we simultaneously measured MP, membrane permeability, and particle counts of antibiotic-treated and untreated Staphylococcus aureus andMicrococcus luteus cells. MP was calculated from the ratio of red and green fluorescence of diethyloxacarbocyanine [DiOC2(3)]. A normalized permeability parameter was calculated from the ratio of far red fluorescence of the nucleic acid dye TO-PRO-3 and green DiOC2(3) fluorescence. Bacterial counts were calculated by the addition of polystyrene beads to the sample at a known concentration. Amoxicillin increased permeability within 45 min. At concentrations of <1 μg/ml, some organisms showed increased permeability but normal MP; this population disappeared after 4 h, while bacterial counts increased. At amoxicillin concentrations above 1 μg/ml, MP decreased irreversibly and the particle counts did not increase. Tetracycline and erythromycin caused smaller, dose- and time-dependent decreases in MP. Tetracycline concentrations of <1 μg/ml did not change permeability, while a tetracycline concentration of 4 μg/ml permeabilized 50% of the bacteria; 4 μg of erythromycin per ml permeabilized 20% of the bacteria. Streptomycin decreased MP substantially, with no effect on permeability; chloramphenicol did not change either permeability or MP. Erythromycin pretreatment of bacteria prevented streptomycin and amoxicillin effects. Flow cytometry provides a sensitive means of monitoring the dynamic cellular events that occur in bacteria exposed to antibacterial agents; however, it is probably simplistic to expect that changes in a single cellular parameter will suffice to determine the sensitivities of all species to all drugs.


Sign in / Sign up

Export Citation Format

Share Document