scholarly journals Development and Application of Aptamer-Based Surface-Enhanced Raman Spectroscopy Sensors in Quantitative Analysis and Biotherapy

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3806 ◽  
Author(s):  
Hai-Xia Wang ◽  
Yu-Wen Zhao ◽  
Zheng Li ◽  
Bo-Shi Liu ◽  
Di Zhang

Surface-enhanced Raman scattering (SERS) is one of the most special and important Raman techniques. An apparent Raman signal can be observed when the target molecules are absorbed onto the surface of the SERS substrates, especially on the “hot spots” of the substrates. Early research focused on exploring the highly active SERS substrates and their detection applications in label-free SERS technology. However, it is a great challenge to use these label-free SERS sensors for detecting hydrophobic or non-polar molecules, especially in complex systems or at low concentrations. Therefore, antibodies, aptamers, and antimicrobial peptides have been used to effectively improve the target selectivity and meet the analysis requirements. Among these selective elements, aptamers are easy to use for synthesis and modifications, and their stability, affinity and specificity are extremely good; they have been successfully used in a variety of testing areas. The combination of SERS detection technology and aptamer recognition ability not only improved the selection accuracy of target molecules, but also improved the sensitivity of the analysis. Variations of aptamer-based SERS sensors have been developed and have achieved satisfactory results in the analysis of small molecules, pathogenic microorganism, mycotoxins, tumor marker and other functional molecules, as well as in successful photothermal therapy of tumors. Herein, we present the latest advances of the aptamer-based SERS sensors, as well as the assembling sensing platforms and the strategies for signal amplification. Furthermore, the existing problems and potential trends of the aptamer-based SERS sensors are discussed.

Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 730 ◽  
Author(s):  
Min Jia ◽  
Shenmiao Li ◽  
Liguo Zang ◽  
Xiaonan Lu ◽  
Hongyan Zhang

Analyzing biomolecules is essential for disease diagnostics, food safety inspection, environmental monitoring and pharmaceutical development. Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for detecting biomolecules due to its high sensitivity, rapidness and specificity in identifying molecular structures. This review focuses on the SERS analysis of biomolecules originated from humans, animals, plants and microorganisms, combined with nanomaterials as SERS substrates and nanotags. Recent advances in SERS detection of target molecules were summarized with different detection strategies including label-free and label-mediated types. This comprehensive and critical summary of SERS analysis of biomolecules might help researchers from different scientific backgrounds spark new ideas and proposals.


2021 ◽  
Vol 31 (4) ◽  
Author(s):  
Quynh-Ngan Luong ◽  
Tran Cao Dao ◽  
Thi Thu Vu ◽  
Manh Cuong Nguyen ◽  
Nhu Duong Nguyen

Surface-enhanced Raman spectroscopy (SERS) is increasingly being used as a method for detecting traces of contaminants in a variety of specimens. In order to maximize SERS’s performance, the most important thing is to have highly active SERS substrates. In this report, we present a simple method for synthesizing silver nanodendrites (AgNDs) on the surface of a copper (Cu) plate using chemical deposition method. The results showed that, after fabrication, a large number of fern-like AgNDs formed on the Cu surface. These AgNDs are distributed evenly across the entire Cu surface with a relatively thick density. The prepared AgNDs were applied as SERS substrates for detecting Rhodamine 6G (R6G) in chili powders. The results showed that, using the prepared AgNDs substrates, as low as 10−10 M R6G in chili powders can be detected. This demonstrates the applicability of fabricated AgNDs as a highly active SERS substrate.


NANO ◽  
2018 ◽  
Vol 13 (05) ◽  
pp. 1850053 ◽  
Author(s):  
Hua-Xiang Chen ◽  
Yu-Ting Wang ◽  
Ting-Ting You ◽  
Jin Zhai ◽  
Peng-Gang Yin

Novel surface-enhanced Raman scattering (SERS) substrates with stable and recyclable properties have been prepared by assembling gold nanoparticles-loaded PET (AuNPs/PET) nanocomposite superhydrophobic surfaces. After a physical vapor deposition process, the AuNPs/PET surfaces with vast plasmonic “hot spots” showed superhydrophobic properties, and it can hold target molecules droplets for rapid SERS detection. From blown off droplets and rinsed substrates with water after detection, we found that no probe molecules remained on the surfaces from Raman spectra. The prepared substrates were not contaminated in the detection process. Furthermore, the new SERS substrates were used for rapidly detecting droplets of crystal violet (CV) and the lowest detection concentration was about [Formula: see text] M. The as-prepared AuNPs/PET substrates also have good performance in terms of reproducibility and recyclability.


The Analyst ◽  
2015 ◽  
Vol 140 (15) ◽  
pp. 5090-5098 ◽  
Author(s):  
Agnieszka Kamińska ◽  
Aneta Aniela Kowalska ◽  
Dmytro Snigurenko ◽  
Elżbieta Guziewicz ◽  
Janusz Lewiński ◽  
...  

Efficient and low-cost surface-enhanced Raman scattering (SERS) substrates based on Au coated zinc oxide layers for the detection of neopterin were prepared.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2905
Author(s):  
Buse Bilgin ◽  
Cenk Yanik ◽  
Hulya Torun ◽  
Mehmet Cengiz Onbasli

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and molecule-specific detection technique that uses surface plasmon resonances to enhance Raman scattering from analytes. In SERS system design, the substrates must have minimal or no background at the incident laser wavelength and large Raman signal enhancement via plasmonic confinement and grating modes over large areas (i.e., squared millimeters). These requirements impose many competing design constraints that make exhaustive parametric computational optimization of SERS substrates prohibitively time consuming. Here, we demonstrate a genetic-algorithm (GA)-based optimization method for SERS substrates to achieve strong electric field localization over wide areas for reconfigurable and programmable photonic SERS sensors. We analyzed the GA parameters and tuned them for SERS substrate optimization in detail. We experimentally validated the model results by fabricating the predicted nanostructures using electron beam lithography. The experimental Raman spectrum signal enhancements of the optimized SERS substrates validated the model predictions and enabled the generation of a detailed Raman profile of methylene blue fluorescence dye. The GA and its optimization shown here could pave the way for photonic chips and components with arbitrary design constraints, wavelength bands, and performance targets.


2021 ◽  
Author(s):  
Yongfeng Tian ◽  
Xianghu Tang ◽  
Ya-Ning Fu ◽  
Shanzhai Shang ◽  
Gaofeng Dong ◽  
...  

Surface enhanced Raman spectroscopy (SERS) is a highly sensitive analytical detection technique that provides unique chemical and structural information on target molecules. Here, simultaneous extraction and SERS detection of nicotine...


2020 ◽  
Vol 12 (47) ◽  
pp. 5657-5670
Author(s):  
Shiqiang Wang ◽  
Bing Sun ◽  
Junjie Feng ◽  
Fei An ◽  
Na Li ◽  
...  

Different affinities to immobilize target molecules onto the surface of SERS substrates.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1564 ◽  
Author(s):  
Mario D’Acunto

In the last decade, surface-enhanced Raman spectroscopy (SERS) met increasing interest in the detection of chemical and biological agents due to its rapid performance and ultra-sensitive features. Being SERS a combination of Raman spectroscopy and nanotechnology, it includes the advantages of Raman spectroscopy, providing rapid spectra collection, small sample sizes, characteristic spectral fingerprints for specific analytes. In addition, SERS overcomes low sensitivity or fluorescence interference that represents two major drawbacks of traditional Raman spectroscopy. Nanoscale roughened metal surfaces tremendously enhance the weak Raman signal due to electromagnetic field enhancement generated by localized surface plasmon resonances. In this paper, we detected label-free SERS signals for arbitrarily configurations of dimers, trimers, etc., composed of gold nanoshells (AuNSs) and applied to the mapping of osteosarcoma intracellular components. The experimental results combined to a theoretical model computation of SERS signal of specific AuNSs configurations, based on open cavity plasmonics, give the possibility to quantify SERS enhancement for overcoming spectral fluctuations. The results show that the Raman signal is locally enhanced inside the cell by AuNSs uptake and correspondent geometrical configuration generating dimers are able to enhance locally electromagnetic fields. The SERS signals inside such regions permit the unequivocal identification of cancer-specific biochemical components such as hydroxyapatite, phenylalanine, and protein denaturation due to disulfide bonds breaking between cysteine links or proline.


The Analyst ◽  
2021 ◽  
Author(s):  
Najwan Albarghouthi ◽  
Presley MacMillan ◽  
Christa L. Brosseau

Modified gold nanorod arrays are used as SERS substrates for the detection of atrazine.


2021 ◽  
Vol 45 (1) ◽  
pp. 1-11
Author(s):  
Ahatashamul Islam ◽  
Fariha Tasneem ◽  
Zulfiqar Hasan Khan ◽  
Asif Rakib ◽  
Syed Farid Uddin Farhad ◽  
...  

We report herein an economically cheap and functionally stable surfaceenhanced Raman scattering (SERS) protocol of two photoactive pigments Rhodamine 6G (R6G) and Kiton Red (KR), implemented in thin films of silver (Ag) and gold (Au) nanoparticles (AgNPs and AuNPs). Both commercially available and chemically synthesized nanoparticles were used. The suitability of the nanoparticles toward SERS activity was tested through UV-visible absorption spectroscopy and scanning electron microscopy (SEM). The AgNPs and AuNPs based SERS substrates in the form of films were fabricated onto square-sized aluminum(Al) plates by simple drop deposition of colloidal nanoparticles solution onto their polished surfaces. The prepared nanoparticle films were sufficiently dried and coated further with the probe (R6G and KR) molecules by employing the identical deposition technique. The enhanced Raman signals of R6G and KR in such composite film structures were then recorded through a custom-built dispersive Raman spectrometer with He-Ne laser excitation at 632.8 nm. Our AgNPsfilm-based SERS protocol could yield the magnitude of the Raman signal enhancement up to 104 times for both R6G and KR. Moreover, AuNPs-based film was found to be less efficient toward the Raman enhancement of both compounds. Our SERS substrates can be easily fabricated, and SERS spectra are reproducible and stable, allowing one to consistently get a reproducible result even after 6 months. J. Bangladesh Acad. Sci. 45(1); 1-11: June 2021


Sign in / Sign up

Export Citation Format

Share Document