scholarly journals Analysis of Biomolecules Based on the Surface Enhanced Raman Spectroscopy

Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 730 ◽  
Author(s):  
Min Jia ◽  
Shenmiao Li ◽  
Liguo Zang ◽  
Xiaonan Lu ◽  
Hongyan Zhang

Analyzing biomolecules is essential for disease diagnostics, food safety inspection, environmental monitoring and pharmaceutical development. Surface-enhanced Raman spectroscopy (SERS) is a powerful tool for detecting biomolecules due to its high sensitivity, rapidness and specificity in identifying molecular structures. This review focuses on the SERS analysis of biomolecules originated from humans, animals, plants and microorganisms, combined with nanomaterials as SERS substrates and nanotags. Recent advances in SERS detection of target molecules were summarized with different detection strategies including label-free and label-mediated types. This comprehensive and critical summary of SERS analysis of biomolecules might help researchers from different scientific backgrounds spark new ideas and proposals.

The Analyst ◽  
2015 ◽  
Vol 140 (15) ◽  
pp. 5090-5098 ◽  
Author(s):  
Agnieszka Kamińska ◽  
Aneta Aniela Kowalska ◽  
Dmytro Snigurenko ◽  
Elżbieta Guziewicz ◽  
Janusz Lewiński ◽  
...  

Efficient and low-cost surface-enhanced Raman scattering (SERS) substrates based on Au coated zinc oxide layers for the detection of neopterin were prepared.


Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3806 ◽  
Author(s):  
Hai-Xia Wang ◽  
Yu-Wen Zhao ◽  
Zheng Li ◽  
Bo-Shi Liu ◽  
Di Zhang

Surface-enhanced Raman scattering (SERS) is one of the most special and important Raman techniques. An apparent Raman signal can be observed when the target molecules are absorbed onto the surface of the SERS substrates, especially on the “hot spots” of the substrates. Early research focused on exploring the highly active SERS substrates and their detection applications in label-free SERS technology. However, it is a great challenge to use these label-free SERS sensors for detecting hydrophobic or non-polar molecules, especially in complex systems or at low concentrations. Therefore, antibodies, aptamers, and antimicrobial peptides have been used to effectively improve the target selectivity and meet the analysis requirements. Among these selective elements, aptamers are easy to use for synthesis and modifications, and their stability, affinity and specificity are extremely good; they have been successfully used in a variety of testing areas. The combination of SERS detection technology and aptamer recognition ability not only improved the selection accuracy of target molecules, but also improved the sensitivity of the analysis. Variations of aptamer-based SERS sensors have been developed and have achieved satisfactory results in the analysis of small molecules, pathogenic microorganism, mycotoxins, tumor marker and other functional molecules, as well as in successful photothermal therapy of tumors. Herein, we present the latest advances of the aptamer-based SERS sensors, as well as the assembling sensing platforms and the strategies for signal amplification. Furthermore, the existing problems and potential trends of the aptamer-based SERS sensors are discussed.


The Analyst ◽  
2021 ◽  
Author(s):  
Najwan Albarghouthi ◽  
Presley MacMillan ◽  
Christa L. Brosseau

Modified gold nanorod arrays are used as SERS substrates for the detection of atrazine.


2018 ◽  
Vol 54 (77) ◽  
pp. 10843-10846 ◽  
Author(s):  
Hua Bai ◽  
Wei Liu ◽  
Wencai Yi ◽  
Xinshi Li ◽  
Junfeng Zhai ◽  
...  

Carbide SERS substrates: nearly monodispersed TaC nanoparticles with a strong plasma resonance effect are synthesized via a magnesium thermal reduction process. As non-noble metal SERS substrates, they offer high sensitivity, outstanding stability, and excellent recyclability.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 477
Author(s):  
Samar Ali Ghopry ◽  
Seyed M. Sadeghi ◽  
Cindy L. Berrie ◽  
Judy Z. Wu

Nanohybrids of graphene and two-dimensional (2D) layered transition metal dichalcogenides (TMD) nanostructures can provide a promising substrate for extraordinary surface-enhanced Raman spectroscopy (SERS) due to the combined electromagnetic enhancement on TMD nanostructures via localized surface plasmonic resonance (LSPR) and chemical enhancement on graphene. In these nanohybrid SERS substrates, the LSPR on TMD nanostructures is affected by the TMD morphology. Herein, we report the first successful growth of MoS2 nanodonuts (N-donuts) on graphene using a vapor transport process on graphene. Using Rhodamine 6G (R6G) as a probe, SERS spectra were compared on MoS2 N-donuts/graphene nanohybrids substrates. A remarkably high R6G SERS sensitivity up to 2 × 10−12 M has been obtained, which can be attributed to the more robust LSPR effect than in other TMD nanostructures such as nanodiscs as suggested by the finite-difference time-domain simulation. This result demonstrates that non-metallic TMD/graphene nanohybrids substrates can have SERS sensitivity up to one order of magnitude higher than that reported on the plasmonic metal nanostructures/2D materials SERS substrates, providing a promising scheme for high-sensitivity, low-cost applications for biosensing.


2021 ◽  
pp. 000370282110329
Author(s):  
Ling Wang ◽  
Mario O. Vendrell-Dones ◽  
Chiara Deriu ◽  
Sevde Doğruer ◽  
Peter de B. Harrington ◽  
...  

Recently there has been upsurge in reports that illicit seizures of cocaine and heroin have been adulterated with fentanyl. Surface-enhanced Raman spectroscopy (SERS) provides a useful alternative to current screening procedures that permits detection of trace levels of fentanyl in mixtures. Samples are solubilized and allowed to interact with aggregated colloidal nanostars to produce a rapid and sensitive assay. In this study, we present the quantitative determination of fentanyl in heroin and cocaine using SERS, using a point-and-shoot handheld Raman system. Our protocol is optimized to detect pure fentanyl down to 0.20 ± 0.06 ng/mL and can also distinguish pure cocaine and heroin at ng/mL levels. Multiplex analysis of mixtures is enabled by combining SERS detection with principal component analysis and super partial least squares regression discriminate analysis (SPLS-DA), which allow for the determination of fentanyl as low as 0.05% in simulated seized heroin and 0.10% in simulated seized cocaine samples.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Xiaowei Cao ◽  
Zhenyu Wang ◽  
Liyan Bi ◽  
Jie Zheng

Surface-enhanced Raman spectroscopy (SERS) is a good candidate for the development of fast and easy-to-use diagnostic tools, possibly used on serum in screening tests. In this study, a potential label-free serum test based on SERS spectroscopy was developed to analyze human serum for the diagnosis of the non-small cell lung cancer (NSCLC). We firstly synthesized novel highly branched gold nanoparticles (HGNPs) at high yield through a one-step reduction of HAuCl4 with dopamine hydrochloride at 60°C. Then, HGNP substrates with good reproducibility, uniformity, and high SERS effect were fabricated by the electrostatically assisted (3-aminopropyl) triethoxysilane-(APTES-) functionalized silicon wafer surface-sedimentary self-assembly method. Using as-prepared HGNP substrates as a high-performance sensing platform, SERS spectral data of serum obtained from healthy subjects, lung adenocarcinoma patients, lung squamous carcinoma patients, and large cell lung cancer patients were collected. The difference spectra among different types of NSCLC were compared, and analysis result revealed their intrinsic difference in types and contents of nucleic acids, proteins, carbohydrates, amino acids, and lipids. SERS spectra were analyzed by principal component analysis (PCA), which was able to distinguish different types of NSCLC. Considering its time efficiency, being label-free, and sensitivity, SERS based on HGNP substrates is very promising for mass screening NSCLC and plays an important role in the detection and prevention of other diseases.


Sign in / Sign up

Export Citation Format

Share Document