scholarly journals Noninvasive Suspicious Liquid Detection Using Wireless Signals

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4086 ◽  
Author(s):  
Jiewen Deng ◽  
Wanrong Sun ◽  
Lei Guan ◽  
Nan Zhao ◽  
Muhammad Bilal Khan ◽  
...  

Conventional liquid detection instruments are very expensive and not conducive to large-scale deployment. In this work, we propose a method for detecting and identifying suspicious liquids based on the dielectric constant by utilizing the radio signals at a 5G frequency band. There are three major experiments: first, we use wireless channel information (WCI) to distinguish between suspicious and nonsuspicious liquids; then we identify the type of suspicious liquids; and finally, we distinguish the different concentrations of alcohol. The K-Nearest Neighbor (KNN) algorithm is used to classify the amplitude information extracted from the WCI matrix to detect and identify liquids, which is suitable for multimodal problems and easy to implement without training. The experimental result analysis showed that our method could detect more than 98% of the suspicious liquids, identify more than 97% of the suspicious liquid types, and distinguish up to 94% of the different concentrations of alcohol.


2017 ◽  
Vol 9 (1) ◽  
pp. 1-9
Author(s):  
Fandiansyah Fandiansyah ◽  
Jayanti Yusmah Sari ◽  
Ika Putri Ningrum

Face recognition is one of the biometric system that mostly used for individual recognition in the absent machine or access control. This is because the face is the most visible part of human anatomy and serves as the first distinguishing factor of a human being. Feature extraction and classification are the key to face recognition, as they are to any pattern classification task. In this paper, we describe a face recognition method based on Linear Discriminant Analysis (LDA) and k-Nearest Neighbor classifier. LDA used for feature extraction, which directly extracts the proper features from image matrices with the objective of maximizing between-class variations and minimizing within-class variations. The features of a testing image will be compared to the features of database image using K-Nearest Neighbor classifier. The experiments in this paper are performed by using using 66 face images of 22 different people. The experimental result shows that the recognition accuracy is up to 98.33%. Index Terms—face recognition, k nearest neighbor, linear discriminant analysis.



Author(s):  
Bao Bing-Kun ◽  
Yan Shuicheng

Graph-based learning provides a useful approach for modeling data in image annotation problems. In this chapter, the authors introduce how to construct a region-based graph to annotate large scale multi-label images. It has been well recognized that analysis in semantic region level may greatly improve image annotation performance compared to that in whole image level. However, the region level approach increases the data scale to several orders of magnitude and lays down new challenges to most existing algorithms. To this end, each image is firstly encoded as a Bag-of-Regions based on multiple image segmentations. And then, all image regions are constructed into a large k-nearest-neighbor graph with efficient Locality Sensitive Hashing (LSH) method. At last, a sparse and region-aware image-based graph is fed into the multi-label extension of the Entropic graph regularized semi-supervised learning algorithm (Subramanya & Bilmes, 2009). In combination they naturally yield the capability in handling large-scale dataset. Extensive experiments on NUS-WIDE (260k images) and COREL-5k datasets well validate the effectiveness and efficiency of the framework for region-aware and scalable multi-label propagation.



2020 ◽  
Vol 10 (14) ◽  
pp. 4886 ◽  
Author(s):  
Mohammed Ali Mohammed Al-hababi ◽  
Muhammad Bilal Khan ◽  
Fadi Al-Turjman ◽  
Nan Zhao ◽  
Xiaodong Yang

Non-contact health care monitoring is a unique feature in the emerging 5G networks that is achieved by exploiting artificial intelligence (AI). The ratio of the number of health care problems and patients is increasing exponentially and creating burgeoning data. The integration of AI and Internet of things (IoT) systems enables us to increase the huge volume of data to be generated. The approach by which AI is applied to the IoT systems enhances the intelligence of the health care system. In post-surgery monitoring of the patient, timely consultation is essential before further loss. Unfortunately, even after the advice of the doctor to the patient, he/she may forget to perform the activity in the correct way, which may lead to complications in recovery. In this research, the idea is to design a non-contact sensing testbed using AI for the classification of post-surgery activities. Universal software-defined radio peripheral (USRP) is utilized to collect the data of spinal cord operated patients during weight lifting activity. The wireless channel state information (WCSI) is extracted by using orthogonal frequency division multiplexing (OFDM) technique. AI applies machine learning to classify the correct and wrong way of weight lifting activity that was considered for experimental analysis. The accuracy achieved by the proposed testbed by using a fine K-nearest neighbor (FKNN) algorithm is 99.6%.



2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Sheng-wei Fei

Fault diagnosis of bearing based on variational mode decomposition (VMD)-phase space reconstruction (PSR)-singular value decomposition (SVD) and improved binary particle swarm optimization (IBPSO)-K-nearest neighbor (KNN) which is abbreviated as VPS-IBPSOKNN is presented in this study, among which VMD-PSR-SVD (VPS) is presented to obtain the features of the bearing vibration signal (BVS), and IBPSO is presented to select the parameter K of KNN. In IBPSO, the calculation of the next position of each particle is improved to fit the evolution of the particles. The traditional KNN with different parameter K and trained by the training samples with the features based on VMD-SVD (VS-KNN) can be used to compare with the proposed VPS-IBPSOKNN method. The experimental result demonstrates that fault diagnosis ability of bearing of VPS-IBPSOKNN is better than that of VS-KNN, and it can be concluded that fault diagnosis of bearing based on VPS-IBPSOKNN is effective.



2016 ◽  
Author(s):  
Ali Ghayoor ◽  
Jane S. Paulsen ◽  
Regina E. Y. Kim ◽  
Hans J. Johnson


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7269
Author(s):  
Ling Ruan ◽  
Ling Zhang ◽  
Tong Zhou ◽  
Yi Long

The weighted K-nearest neighbor algorithm (WKNN) is easily implemented, and it has been widely applied. In the large-scale positioning regions, using all fingerprint data in matching calculations would lead to high computation expenses, which is not conducive to real-time positioning. Due to signal instability, irrelevant fingerprints reduce the positioning accuracy when performing the matching calculation process. Therefore, selecting the appropriate fingerprint data from the database more quickly and accurately is an urgent problem for improving WKNN. This paper proposes an improved Bluetooth indoor positioning method using a dynamic fingerprint window (DFW-WKNN). The dynamic fingerprint window is a space range for local fingerprint data searching instead of universal searching, and it can be dynamically adjusted according to the indoor pedestrian movement and always covers the maximum possible range of the next positioning. This method was tested and evaluated in two typical scenarios, comparing two existing algorithms, the traditional WKNN and the improved WKNN based on local clustering (LC-WKNN). The experimental results show that the proposed DFW-WKNN algorithm enormously improved both the positioning accuracy and positioning efficiency, significantly, when the fingerprint data increased.



Author(s):  
Bingming Wang ◽  
Shi Ying ◽  
Guoli Cheng ◽  
Rui Wang ◽  
Zhe Yang ◽  
...  

Logs play an important role in the maintenance of large-scale systems. The number of logs which indicate normal (normal logs) differs greatly from the number of logs that indicate anomalies (abnormal logs), and the two types of logs have certain differences. To automatically obtain faults by K-Nearest Neighbor (KNN) algorithm, an outlier detection method with high accuracy, is an effective way to detect anomalies from logs. However, logs have the characteristics of large scale and very uneven samples, which will affect the results of KNN algorithm on log-based anomaly detection. Thus, we propose an improved KNN algorithm-based method which uses the existing mean-shift clustering algorithm to efficiently select the training set from massive logs. Then we assign different weights to samples with different distances, which reduces the negative effect of unbalanced distribution of the log samples on the accuracy of KNN algorithm. By comparing experiments on log sets from five supercomputers, the results show that the method we proposed can be effectively applied to log-based anomaly detection, and the accuracy, recall rate and F measure with our method are higher than those of traditional keyword search method.



Author(s):  
Hanfei Zhang ◽  
Yumei Jian ◽  
Ping Zhou

: A class correlation distance collaborative filtering recommendation algorithm is proposed to solve the problems of category judgment and distance metric in the traditional collaborative filtering recommendation algorithm, which is using the advantage of the distance between the same samples and the class related distance. First, the class correlation distance between the training samples is calculated and stored. Second, the K nearest neighbor samples are selected, the class correlation distance of training samples and the difference ratio between the test samples and training samples are calculated respectively. Finally, according to the difference ratio, we classify the different types of samples. The experimental result shows that the algorithm combined with user rating preference can get lower MAE value, and the recommendation effect is better. With the change of K value, CCDKNN algorithm is obviously better than KNN algorithm and DWKNN algorithm, and the accuracy performance is more stable. The algorithm improves the accuracy of similarity and predictability, which has better performance than the traditional algorithm.



Forests ◽  
2014 ◽  
Vol 5 (7) ◽  
pp. 1635-1652 ◽  
Author(s):  
Leonhard Suchenwirth ◽  
Wolfgang Stümer ◽  
Tobias Schmidt ◽  
Michael Förster ◽  
Birgit Kleinschmit


Sign in / Sign up

Export Citation Format

Share Document