scholarly journals Enhanced Distributed Fiber Optic Vibration Sensing and Simultaneous Temperature Gradient Sensing Using Traditional C-OTDR and Structured Fiber with Scattering Dots

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4114 ◽  
Author(s):  
Konstantin Hicke ◽  
René Eisermann ◽  
Sebastian Chruscicki

We present results demonstrating several beneficial effects on distributed fiber optic vibration sensing (DVS) functionality and performance resulting from utilizing standard single mode optical fiber (SMF) with femtosecond laser-inscribed equally-spaced simple scattering dots. This modification is particularly useful when using traditional single-wavelength amplitude-based coherent optical time domain reflectometry (C-OTDR) as sensing method. Local sensitivity is increased in quasi-distributed interferometric sensing zones which are formed by the fiber segments between subsequent pairs of the scattering dots. The otherwise nonlinear transfer function is overwritten with that of an ordinary two-beam interferometer. This linearizes the phase response to monotonous temperature variations. Furthermore, sensitivity fading is mitigated and the demodulation of low-frequency signals is enabled. The modification also allows for the quantitative determination of local temperature gradients directly from the C-OTDR intensity traces. The dots’ reflectivities and thus the induced attenuation can be tuned via the inscription process parameters. Our approach is a simple, robust and cost-effective way to gain these sensing improvements without the need for more sophisticated interrogator technology or more complex fiber structuring, e.g., based on ultra-weak FBG arrays. Our claims are substantiated by experimental evidence.

Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4779
Author(s):  
Vít Novotný ◽  
Petr Sysel ◽  
Aleš Prokeš ◽  
Pavel Hanák ◽  
Karel Slavíček ◽  
...  

The distributed long-range sensing system, using the standard telecommunication single-mode optical fiber for the distributed sensing of mechanical vibrations, is described. Various events generating vibrations, such as a walking or running person, moving car, train, and many other vibration sources, can be detected, localized, and classified. The sensor is based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR). Related sensing system components were designed and constructed, and the system was tested both in the laboratory and in the real deployment, with an 88 km telecom optical link, and the results are presented in this paper. A two-fiber sensor unit, with a double-sensing range was also designed, and its scheme is described. The unit was constructed and the initial measurement results are presented.


Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5049
Author(s):  
Agnese Coscetta ◽  
Ester Catalano ◽  
Enis Cerri ◽  
Ricardo Oliveira ◽  
Lucia Bilro ◽  
...  

We demonstrate the use of a graded-index perfluorinated optical fiber (GI-POF) for distributed static and dynamic strain measurements based on Rayleigh scattering. The system is based on an amplitude-based phase-sensitive Optical Time-Domain Reflectometry (ϕ-OTDR) configuration, operated at the unconventional wavelength of 850 nm. Static strain measurements have been carried out at a spatial resolution of 4 m and for a strain up to 3.5% by exploiting the increase of the backscatter Rayleigh coefficient consequent to the application of a tensile strain, while vibration/acoustic measurements have been demonstrated for a sampling frequency up to 833 Hz by exploiting the vibration-induced changes in the backscatter Rayleigh intensity time-domain traces arising from coherent interference within the pulse. The reported tests demonstrate that polymer optical fibers can be used for cost-effective multiparameter sensing.


2018 ◽  
Vol 85 (s1) ◽  
pp. s73-s79
Author(s):  
Moritz A. Graf ◽  
Fabian Ehmer ◽  
Christoph Eisermann ◽  
Martin Jakobi ◽  
Alexander W. Koch

Zusammenfassung In diesem Beitrag wird ein neuartiger Ansatz zur Schadensdetektion in Stromversorgungskabeln vorgestellt. Die Funktionalität des Messsystems kann bezüglich des durch Makrobiegungen induzierten Anstiegs des Dämpfungsbelags verifiziert werden. Durch den verwendeten Integrationsansatz sind Mantelschäden im Stromversorgungskabel detektierbar, wodurch langfristige Ausfallgründe frühzeitig erkannt werden. Über eine integrierte optische Faser und ein optisches Zeitbereichsreflektometer kann unabhängig von der elektrischen Energieübertragung im Kabel eine exakte und effiziente Schadenslokalisierung sichergestellt werden, was wiederum eine Zeit- und Kostenersparnis zur Folge hat.


2020 ◽  
Author(s):  
Yongxiang Chen ◽  
Yun Fu ◽  
Ji Xiong ◽  
Zinan Wang

Abstract In this paper, a novel birefringence measurement method through the Rayleigh backscattered lightwave within single-mode fiber is proposed, using a single chirped-pulse with arbitrary state of polarization. Numerical analysis is carried out in detail, then pulse-compression phase-sensitive optical time domain reflectometry (PC-Φ-OTDR) with polarization-diverse coherent detection is employed to verify this method. A 2km spun single-mode fiber is tested with 8.6 cm spatial resolution, and the average birefringence of the fiber under test is measured as 0.234rad/m, which is consistent with previous literatures about single-mode fiber. Moreover, the relationship between the measured birefringence and the spatial resolution is also studied for the first time, and the results show that spatial resolution is crucial for fiber birefringence measurement.


Proceedings ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 30 ◽  
Author(s):  
Sascha Liehr ◽  
Sven Münzenberger ◽  
Katerina Krebber

We introduce wavelength-scanning coherent optical time domain reflectometry (WS-COTDR) for dynamic vibration sensing along optical fibers. The method is based on spectral shift computation from Rayleigh backscatter spectra. Artificial neural networks (ANNs) are used for fast and high-resolution strain computation from raw measurement data. The applicability of the method is demonstrated for vibration monitoring of a reinforced concrete bridge. We demonstrate another application example for quasi-static and dynamic measurement of ground deformation and surface wave propagation along a dark fiber in a telecommunication cable.


Sign in / Sign up

Export Citation Format

Share Document