scholarly journals Self-Powered Speed Sensor for Turbodrills Based on Triboelectric Nanogenerator

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4889 ◽  
Author(s):  
Chuan Wu ◽  
Chenxing Fan ◽  
Guojun Wen

Turbodrills play an important role in underground energy mining. The downhole rotational speed of turbodrills is one of the key parameters for controlling the drilling technology. Therefore, it is necessary to measure the rotational speed of the turbodrills in real time. However, there is no dedicated speed sensor for the working environment of turbodrills at present. Therefore, based on the working principle of triboelectric nanogenerator (TENG), a self-powered speed sensor which can measure the speed of the turbodrills is proposed in this study. Besides, since the sensor is self-powered, it can operate without power supply. According to the laboratory test results, the measurement error of the sensor is less than 5%. In addition, the self-powered performance of the sensor was also explored in this study. The test shows that the maximum generating voltage of the sensor is about 27 V, the maximum current is about 7 μA, the maximum power is about 2 × 10−4 W, and the generated electricity can supply power for ten LED (light-emitting diode), which not only meets the power supply requirements of the sensor itself, but also makes it possible to further power other underground instruments.

2021 ◽  
Vol 11 (8) ◽  
pp. 3506
Author(s):  
Zhenyu Zhao ◽  
Chuan Wu ◽  
Qing Zhou

During the basketball training for beginner children, sensors are needed to count the number of times the basketball hits the target area in a certain period of time to evaluate the training effect. This study proposes a self-powered basketball training sensor, based on a triboelectric nanogenerator. The designed sensor with a rectangular floor shape will output a pulse signal with the same frequency as the basketball impact to achieve the measurement function through the mutual contact of the internal copper (Cu) and polytetrafluoroethylene (PTFE). Test results show that the working frequency of the sensor is 0 to 5 Hz, the working environment temperature should be less than 75 °C, the working environment humidity should be less than 95%, and which has high reliability. Further tests show that the maximum output voltage, current, and power of the sensor can reach about 52 V, 4 uA, and 26.5 uW with a 10 MΩ resistance in series, respectively, and the output power can light up 12 light-emitting diode (LED) lights in real-time. Compared with the traditional statistical method of manual observation, the sensor can automatically count data in a self-powered manner, and also can light up the LED lights in real-time as an indicator of whether the basketball impacts the target area, to remind beginner children in real-time.


MRS Advances ◽  
2016 ◽  
Vol 1 (45) ◽  
pp. 3083-3088 ◽  
Author(s):  
Sujoy Kumar Ghosh ◽  
Dipankar Mandal

ABSTRACTA ferroelectric nanogenerator without any electric poling treatment has been realized by incorporation of ytterbium (Yb) salt incorporated porous PVDF composite film. The composite film compose of electroactive β- and γ-phases, demonstrates higher dielectric and ferroelectric polarization responses than pure PVDF film. The 3 V of open circuit voltage with 0.47 µW/cm2 power density was generated by the nanogenerator upon single finger touch. It can also operate capacitor and light emitting diode without any subsidiary batteries.


Nanoscale ◽  
2017 ◽  
Vol 9 (38) ◽  
pp. 14499-14505 ◽  
Author(s):  
Yanchao Mao ◽  
Nan Zhang ◽  
Yingjie Tang ◽  
Meng Wang ◽  
Mingju Chao ◽  
...  

A novel paper triboelectric nanogenerator (P-TENG) was successfully developed. The P-TENG can harvest mechanical energy from the action of turning book pages, and the generated electricity could directly light up 80 commercial white light-emitting diodes (LEDs).


2022 ◽  
Author(s):  
Dhiraj Bharti ◽  
Sushmitha Veeralingam ◽  
Sushmee Badhulika

Obtaining sustainable, high output power supply from triboelectric nanogenerators still remains a major issue which restricts their widespread use in self-powered electronic applications. In this work, an ultra-high performance, non-toxic,...


Author(s):  
David Baeza Moyano ◽  
Roberto Alonso González Lezcano

Office work has so far been carried out in company buildings and was largely based on the use of paper on a horizontal surface. Due to multiple reasons, more workers are working in their homes with electronic devices. As a result, both the working environment and personal tools are changing. Since the discovery about 20 years ago of the non-visual ways of light absorption, it was known that apart from the image forming effects (IF) of light from which the criteria for correct lighting have been developed, non-image forming effects (NIF) of light exist. The discovery of NIF has enhanced researcher belief in the importance of daylighting and has raised new criteria to be taken into account for proper interior lighting. Due to all the factors mentioned above, the parameters to be met by a luminaire and its environment for proper lighting of the workstation have been modified and expanded. The rapid advance in the development of new light-emitting diode (LED) luminaires with which the spectral power distribution (SPD) can be practically created opens the door to a genuine technological revolution comparable to the invention of electric lighting around 150 years ago. The authors of this study will review the latest published studies on the importance of light in our lives, IF and NIF effects of light, the parameters which from these effects are suggested to be taken into account for a correct indoor lighting, the regulations in force on indoor lighting workplaces, and proposals to improve indoor lighting and therefore the quality of life of workers.


2015 ◽  
Vol 3 (5) ◽  
pp. 990-994 ◽  
Author(s):  
Hai Zhou ◽  
Pengbin Gui ◽  
Qiuheng Yu ◽  
Jun Mei ◽  
Hao Wang ◽  
...  

A self-powered, visible-blind ultraviolet photodetector based on n-ZnO nanorods/i-MgO/p-GaN structure light-emitting diode.


Sign in / Sign up

Export Citation Format

Share Document