scholarly journals The GA-BPNN-Based Evaluation of Cultivated Land Quality in the PSR Framework Using Gaofen-1 Satellite Data

Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5127 ◽  
Author(s):  
Liu ◽  
Peng ◽  
Xia ◽  
Hu ◽  
Wang ◽  
...  

Rapid and efficient assessment of cultivated land quality (CLQ) using remote sensing technology is of great significance for protecting cultivated land. However, it is difficult to obtain accurate CLQ estimates using the current satellite-driven approaches in the pressure-state-response (PSR) framework, owing to the limitations of linear models and CLQ spectral indices. In order to improve the estimation accuracy of CLQ, this study used four evaluation models (the traditional linear model; partial least squares regression, PLSR; back propagation neural network, BPNN; and BPNN with genetic algorithm optimization, GA-BPNN) to evaluate CLQ for determining the accurate evaluation model. In addition, the optimal satellite-derived indicator in the land state index was selected among five vegetation indices (the normalized vegetation index, NDVI; enhanced vegetation index, EVI; modified soil-adjusted vegetation index, MSAVI; perpendicular vegetation index, PVI; and soil-adjusted vegetation index, SAVI) to improve the prediction accuracy of CLQ. This study was conducted in Conghua District of Guangzhou, Guangdong Province, China, based on Gaofen-1 (GF-1) data. The prediction accuracies from the traditional linear model, PLSR, BPNN, and GA-BPNN were compared using observations. The results demonstrated that (1) compared with other models (the traditional linear model: R2 = 0.14 and RMSE = 91.53; PLSR: R2 = 0.33 and RMSE = 74.58; BPNN: R2 = 0.50 and RMSE = 61.75), the GA-BPNN model based on EVI in the land state index provided the most accurate estimates of CLQ, with the R2 of 0.59 and root mean square error (RMSE) of 56.87, indicating a nonlinear relationship between CLQ and the prediction indicator; and (2) the GA-BPNN-based evaluation approach of CLQ in the PSR framework was driven to map CLQ of the study area using the GF-1 data, leading to an RMSE of 61.44 at the regional scale, implying that the GA-BPNN-based evaluation approach has the potential to map CLQ over large areas. This study provides an important reference for the high-accuracy prediction of CLQ based on remote sensing technology.

Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4937 ◽  
Author(s):  
Ziqing Xia ◽  
Yiping Peng ◽  
Shanshan Liu ◽  
Zhenhua Liu ◽  
Guangxing Wang ◽  
...  

This study proposes a method for determining the optimal image date to improve the evaluation of cultivated land quality (CLQ). Five vegetation indices: leaf area index (LAI), difference vegetation index (DVI), enhanced vegetation index (EVI), normalized difference vegetation index (NDVI), and ratio vegetation index (RVI) are first retrieved using the PROSAIL model and Gaofen-1 (GF-1) images. The indices are then introduced into four regression models at different growth stages for assessing CLQ. The optimal image date of CLQ evaluation is finally determined according to the root mean square error (RMSE). This method is tested and validated in a rice growth area of Southern China based on 115 sample plots and five GF-1 images acquired at the tillering, jointing, booting, heading to flowering, and milk ripe and maturity stage of rice in 2015, respectively. The results show that the RMSEs between the measured and estimated CLQ from four vegetation index-based regression models at the heading to flowering stage are smaller than those at the other growth stages, indicating that the image date corresponding with the heading to flowering stage is optimal for CLQ evaluation. Compared with other vegetation index-based models, the LAI-based logarithm model provides the most accurate estimates of CLQ. The optimal model is also driven using the GF-1 image at the heading to flowering stage to map CLQ of the study area, leading to a relative RMSE of 14.09% at the regional scale. This further implies that the heading to flowering stage is the optimal image time for evaluating CLQ. This study is the first effort to provide an applicable method of selecting the optimal image date to improve the estimation of CLQ and thus advanced the literature in this field.


Author(s):  
A. Azabdaftari ◽  
F. Sunar

Soil salinity is one of the most important problems affecting many areas of the world. Saline soils present in agricultural areas reduce the annual yields of most crops. This research deals with the soil salinity mapping of Seyhan plate of Adana district in Turkey from the years 2009 to 2010, using remote sensing technology. In the analysis, multitemporal data acquired from LANDSAT 7-ETM<sup>+</sup> satellite in four different dates (19 April 2009, 12 October 2009, 21 March 2010, 31 October 2010) are used. As a first step, preprocessing of Landsat images is applied. Several salinity indices such as NDSI (Normalized Difference Salinity Index), BI (Brightness Index) and SI (Salinity Index) are used besides some vegetation indices such as NDVI (Normalized Difference Vegetation Index), RVI (Ratio Vegetation Index), SAVI (Soil Adjusted Vegetation Index) and EVI (Enhamced Vegetation Index) for the soil salinity mapping of the study area. The field’s electrical conductivity (EC) measurements done in 2009 and 2010, are used as a ground truth data for the correlation analysis with the original band values and different index image bands values. In the correlation analysis, two regression models, the simple linear regression (SLR) and multiple linear regression (MLR) are considered. According to the highest correlation obtained, the 21st March, 2010 dataset is chosen for production of the soil salinity map in the area. Finally, the efficiency of the remote sensing technology in the soil salinity mapping is outlined.


Author(s):  
A. Azabdaftari ◽  
F. Sunar

Soil salinity is one of the most important problems affecting many areas of the world. Saline soils present in agricultural areas reduce the annual yields of most crops. This research deals with the soil salinity mapping of Seyhan plate of Adana district in Turkey from the years 2009 to 2010, using remote sensing technology. In the analysis, multitemporal data acquired from LANDSAT 7-ETM<sup>+</sup> satellite in four different dates (19 April 2009, 12 October 2009, 21 March 2010, 31 October 2010) are used. As a first step, preprocessing of Landsat images is applied. Several salinity indices such as NDSI (Normalized Difference Salinity Index), BI (Brightness Index) and SI (Salinity Index) are used besides some vegetation indices such as NDVI (Normalized Difference Vegetation Index), RVI (Ratio Vegetation Index), SAVI (Soil Adjusted Vegetation Index) and EVI (Enhamced Vegetation Index) for the soil salinity mapping of the study area. The field’s electrical conductivity (EC) measurements done in 2009 and 2010, are used as a ground truth data for the correlation analysis with the original band values and different index image bands values. In the correlation analysis, two regression models, the simple linear regression (SLR) and multiple linear regression (MLR) are considered. According to the highest correlation obtained, the 21st March, 2010 dataset is chosen for production of the soil salinity map in the area. Finally, the efficiency of the remote sensing technology in the soil salinity mapping is outlined.


2021 ◽  
Vol 15 (4) ◽  
pp. 21-43
Author(s):  
Esther O. Makinde ◽  
Cristina M. Andonegui ◽  
Ainhoa A. Vicario

Our ecosystem, particularly forest lands, contains huge amounts of carbon storage in the world today. This study estimated the above ground biomass and carbon stock in the green space of Bilbao Spain using remote sensing technology. Landsat ETM+ and OLI satellite images for year 1999, 2009 and 2019 were used to assess its land use land cover (LULC), change detection, spectral indices and model biomass based on linear regression. The result of the LULC showed that there was an increase in forest vegetation by 12.5% from 1999 to 2009 and a further increase by 2.3% in 2019. However, plantation cover had decreased by 3.5% from 1999–2009; while wetlands had also decreased by 9% within the same period. There was, however, an increase in plantation cover from 2009 to 2019 by 2.1% but a further decrease in wetlands of 4.3%. Further results revealed a positive correlation across the three decades between the widely used Normalized Differential Vegetation Index (NDVI) with other spectral indices such as Enhance Vegetation Index (EVI) and Normalized Differential Moisture Index (NDMI) for biomass were: for 1999 EVI (R2 = 0.1826), NDMI (R2 = 0.0117), for 2009 EVI (R2 = 0.2192), NDMI (R2 = 0.3322), for 2019EVI (R2 = 0.1258), NDMI (R2 = 0.8148). A reduction in the total carbon stock from 14,221.94 megatons in 1999 to 10,342.44 megatons 2019 was observed. This study concluded that there has been a reduction in the amount of carbon which the Biscay Forest can sequester.


Author(s):  
İ. Avcı ◽  
E. Farzaliyev ◽  
E. Kabullar

Abstract. A large share of the earth's surface is observed with remote sensing technology. Thanks to the data obtained from this process, information about the observed lands is obtained. In this study, NDVI (normalized difference), which is developed by applying mathematical operations on the reflection values of plants at different wavelengths from remote sensing technology and different application areas of this technology, electromagnetic rays, and spectral reflection values, and which is used as a method that provides a value expressing vegetation density. Vegetation index) method, NDVI value, and plant groups analyzed according to this value, sample MATLAB applications related to the NDVI method are mentioned. -Green-Blue) image of visible red and infrared regions, histogram graph showing the relationships between the intensities of values in NIR (near-infrared) and Red (visible Red) bands, NDVI image, and threshold function at the end. The NDVI image was obtained by using the direction (to detect areas that may have vegetation) is shown.


2021 ◽  
Vol 944 (1) ◽  
pp. 012046
Author(s):  
B F Haikal ◽  
S B Susilo ◽  
S B Agus ◽  
R Z Oktavian

Abstract The existence of mangrove ecosystems is increasingly threatened due to the rapid development of tourist destinations and the increasing number of residents in Harapan, Kelapa and Pamegaran island, so that monitoring of mangrove ecosystems is necessary. The purpose of the research is to map the distribution of mangroves using remote sensing technology in Harapan, Kelapa and Pamegaran island. The field survey was conducted on April 1-10, 2021, taking 189 sample points using a hemispherical photography method. The maximum likelihood classification method is used to classify mangrove and non-mangrove vegetation. Normalized Difference Vegetation Index (NDVI) is an algorithm used to calculate vegetation indexes from satellite imagery. The Sentinel-2A image was classified into 3 classes of mangrove density, namely dense, moderate, and rare density classes, with the dominant class being the dense class. The total mangrove area on Pamegaran Island in 2015 amounted to 1.81 ha and the total mangrove area in 2021 amounted to 2.97 ha. The area of mangrove distribution in Harapan and Kelapa Island in 2015 amounted to 4.1 ha and in 2021 amounted to 6.56 ha. Mangrove density classification accuracy test using confusion matrix showed an accuracy of 82.95%.


1997 ◽  
Author(s):  
Tom Wilson ◽  
Rebecca Baugh ◽  
Ron Contillo ◽  
Tom Wilson ◽  
Rebecca Baugh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document