scholarly journals Assessing Global Ionosphere TEC Maps with Satellite Altimetry and Ionospheric Radio Occultation Observations

Sensors ◽  
2019 ◽  
Vol 19 (24) ◽  
pp. 5489 ◽  
Author(s):  
Wei Li ◽  
Longqiang Huang ◽  
Shaocheng Zhang ◽  
Yanju Chai

As global navigation satellite system (GNSS)stations are sparsely distributed in oceanic area, oceanic areas usually have lower precision than continental areas on a global ionosphere maps (GIM). On the other hand, space-borne observations like satellite altimetry (SA) and ionospheric radio occultation (IRO) have substantial dual-frequency observations in oceanic areas, which could be used for total electron content (TEC) retrieval. In this paper, the Jason-2 SA and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) IRO products were used to assess the precision of IGS GIM products. Both the systematic biases and scaling factors between the international GNSS service (IGS) GIM TEC and space-borne TEC were calculated, and the statistical results show that the biases and the scaling factors obviously vary under different temporal-spatial conditions. This analysis shows that these differences are variable with diurnal and latitude factors, that is, the differences in biases during the day time are higher than those during the night time, and larger biases are experienced at lower latitude areas than at high latitude areas. The results also show that in the southern hemisphere middle-high latitude area and some other central oceanic areas, the space-borne TEC values are even higher than GIM TEC values. As the precision of space-borne TEC should be evenly distributed around different areas on Earth, it can be explain that the TEC in these areas is undervalued by the current GIM model, and the space-borne SA and IRO techniques could be used as complementary observations to improve the accuracy and reliability of TEC values in these areas.

2020 ◽  
Author(s):  
Paulina Woźniak ◽  
Anna Świątek ◽  
Mariusz Pożoga ◽  
Łukasz Tomasik

<p>The signal emitted by the GNSS (<em>Global Navigation Satellite System</em>) satellite, on the way to the receiver located on the Earth’s surface, encounters a heterogeneous layer of ionized gas and free electrons, in which the radio wave is dispersed. As the ionosphere is the source of the highest-value errors among the different factors that affect GNSS positioning accuracy, it is necessary to minimize its negative impact. Various methods are used to compensate for the ionospheric delay, one of which is the usage of models.<br>The intensity of the processes occurring in the ionosphere is closely related to the Sun activity. As a consequence, with respect to a given location on the Earth's surface, the activity of the ionosphere changes throughout the year and day. Therefore, a model dedicated to a specific region is especially important in case of high-precision GNSS applications.<br>The assimilated H2PT model was based on the dual-frequency observations from GNSS stations belonging to EPN (<em>EUREF Permanent Network</em>), as well as on ionosondes participating in the DIAS (<em>European Digital Upper Atmosphere Server</em>) project. The H2PT model covers the Europe area, data with a 15-minutes interval were placed in similar to IONEX (<em>IONosphere Map EXchenge</em>) files in two versions of spatial resolution: 1- and 5-degree. Data provided by the H2PT model are the VTEC (<em>Vertical Total Electron Content</em>) values and the hmF2 (<em>maximum height of the F2 layer</em>) parameters.<br>The subject of this research is the comparison of the H2PT model with NeQuick-G model and IONEX data published by IGS (<em>International GNSS Service</em>) in the context of TEC values as well as determining differences between regional hmF2 data and its commonly used fixed value for the entire globe, amounting to 450 km. In order to perform the analysis, appropriate visualizations were made and statistical parameters determined. Additionally, data from selected periods of positive and negative disturbances were analysed in details based on the developed time series.<br>The relatively high temporal and spatial resolution is undoubtedly an advantage of the H2PT model, because unlike global models, the regional one allows conscientious analysis of the ionosphere characteristics for the area of Europe. Importantly, solutions regarding hmF2 show significant deviations from the fixed value approximated for the whole Earth. Taking into account the parameter appropriate for a given location and time during GNSS data processing may improve the obtained positioning quality. </p>


2020 ◽  
Author(s):  
Teng Liu ◽  
Baocheng Zhang ◽  
Yunbin Yuan ◽  
Xiao Zhang

<p>The ionospheric delay accounts for one of the major errors that the Global Navigation Satellite Systems (GNSS) suffer from. Hence, the ionosphere Vertical Total Electron Content (VTEC) map has been an important atmospheric product within the International GNSS Service (IGS) since its early establishment. In this contribution, an enhanced method has been proposed for the modeling of the ionosphere VTECs. Firstly, to cope with the rapid development of the newly-established Galileo and BeiDou constellations in recent years, we extend the current dual-system (GPS/GLONASS) solution to a quad-system (GPS/GLONASS/Galileo/BeiDou) solution. More importantly, instead of using dual-frequency observations based on the Carrier-to-Code Leveling (CCL) method, all available triple-frequency signals are utilized with a general raw-observation-based multi-frequency Precise Point Positioning (PPP) model, which can process dual-, triple- or even arbitrary-frequency observations compatibly and flexibly. Benefiting from this, quad-system slant ionospheric delays can be retrieved based on multi-frequency observations in a more flexible, accurate and reliable way. The PPP model has been applied in both post-processing global and real-time regional VTEC modeling. Results indicate that with the improved slant ionospheric delays, the corresponding VTEC models are also improved, comparing with the traditional CCL method.</p>


2004 ◽  
Vol 22 (1) ◽  
pp. 25-33 ◽  
Author(s):  
B. Jayachandran ◽  
T. N. Krishnankutty ◽  
T. L. Gulyaeva

Abstract. The ionospheric slab thickness τ defined as a ratio of the total electron content (TEC) to the F-region peak electron density (NmF2) has been analysed during the solar maximum (1981) and minimum (1985) phases of an intense, the 21st, solar cycle. Hourly values of TEC and NmF2 collected at Hawaii (low-latitude), Boulder (mid-latitude) and Goosebay (high-latitude) are used in the study. Climatology of the slab thickness is described by the diurnal, seasonal, solar and magnetic activity variations of τ for the different latitude zones. It is found that, for magnetically quiet days of solar maximum, increased ionization of NmF2 and TEC during the daytime is accompanied by an increased thickness of the ionosphere compared to the night-time for non-auroral latitudes. However, the reverse is found to be true during the solar minimum compensating TEC against a weak night-time ionization of NmF2. For the high-latitude the night-time slab thickness is higher compared to the daytime for both the solar phases. Ratios of daily peak to minimum values of slab thickness vary from 1.3 to 3.75 with the peaks of τ often observed at pre-sunrise and post-sunset hours. The average night-to-day ratios of τ vary from 0.68 to 2.23. The day-to-day variability of τ, expressed in percentage standard deviation, varies from 10% by day (equinox, high-latitude) to 67% by night (summer, mid-latitude) during solar minimum and from 10% by day (winter and equinox, mid-latitude) to 56% by night (equinox, high-latitude) during solar maximum. A comprehensive review of slab thickness related literature is given in the paper. Key words. Ionospheric physics


Author(s):  
Dominic Chukwuebuka Obiegbuna ◽  
Francisca Nneka Okeke ◽  
Kingsley Chukwudi Okpala ◽  
Orji Prince Orji ◽  
Gregory Ibeabuchi Egba ◽  
...  

We have studied and compared the effects of full and partial halo geomagnetic storms on the high latitude ionosphere. The study used the total electron content (TEC) data obtained from the global positioning system (GPS) to examine the level of response of high latitude ionosphere around Ny Alesund, Norway to full and partial halo geomagnetic storms of June 23rd 2015 and January 1st 2016 respectively. This study was carried out using a dual frequency ground based GNSS observations at high latitude (NYAL: 78.56oN, 11.52oE) ionospheric station in Norway. The vertical TEC (VTEC) was extracted from Receiver Independent Exchange (RINEX) formatted GPS-TEC data using the GOPI Software developed by Seemala Gopi. The GOPI software is a GNSS-TEC analysis program which uses ephemeris data and differential code biases (DCBs) in estimating slant TEC (STEC) prior to its conversion to VTEC. From the results, the responses of the high latitude before the storm days were more positive than on the storm days. Also the overall response of the high latitude to the full halo geomagnetic storm was more positive with more impact than that of the partial halo geomagnetic storm.


2015 ◽  
Vol 58 (5) ◽  
Author(s):  
V. Rajesh Chowdhary ◽  
Nitin K. Tripathi ◽  
Sanit Arunpold ◽  
Durairaju Kumaran Raju

<p>This paper presents the first results of vertical total electron content (VTEC) data from (1) a dual-frequency GPS receiver installed at the Chiang Mai University in Chiang Mai <em>(CHGM, 18.480 N, 98.570 E)</em> as part of SCINDA (Scintillation Network and Decision Aid) and (2) the International GNSS Service (IGS) station Pathum Wan (<em>CUSV, 13.735 N, 100.533 E</em>) with magnetic latitude of 8.69°N and 3.92°N respectively in Thailand, from August 2010 to July 2012. In the equatorial ionization anomaly (EIA) region, these two stations are separated at a distance of 668 km. Observed GPS-TEC values were found to be the highest between 1500 and 1900 Local Time (LT) throughout the study period at both the stations. The GPS-TEC data from both the stations was plotted diurnal, monthly and seasonal analyses were performed. The equinox (March, April, September, and October) and solstice (January, February, June, July, and December) periods had maximum and minimum diurnal peak variations, respectively, of the GPS-TEC. High TEC values are attributed to extreme solar ultra-violet ionization coupled with upward vertical E×B drift. A comparison of the GPS-TEC data from both the stations for the study period shows that the CHGM station recorded higher values of TEC than the CUSV station because of the formation of an ionization crest over the CHGM station. The GPS-TEC values also exhibited an increasing trend-because of the approach of solar cycle 24. For data validation, the diurnal, monthly, and seasonal variations in the measured TEC were compared with the TEC modelled in the International Reference Ionosphere (IRI) models (IRI-2007 and the recently released IRI-2012 model). The IRI-2007 shows good agreement with the data from 2010 to 2011 from both stations and IRI-2012 agrees well with the data from 2012 onwards compared to IRI-2007.</p>


2020 ◽  
Vol 12 (3) ◽  
pp. 439 ◽  
Author(s):  
Xiangdong An ◽  
Xiaolin Meng ◽  
Hua Chen ◽  
Weiping Jiang ◽  
Ruijie Xi ◽  
...  

With the emergence of BeiDou and Galileo as well as the modernization of GPS and GLONASS, more available satellites and signals enhance the capability of Global Navigation Satellite Systems (GNSS) to monitor the ionosphere. However, currently the International GNSS Service (IGS) Ionosphere Associate Analysis Centers (IAACs) just use GPS and GLONASS dual-frequency observations in ionosphere estimation. To better determine the global ionosphere, we used multi-frequency, multi-constellation GNSS observations and a priori International Reference Ionosphere (IRI) to model the ionosphere. The newly estimated ionosphere was represented by a spherical harmonic expansion function with degree and order of 15 in a solar-geomagnetic frame. By collecting more than 300 stations with a global distribution, we processed and analysed two years of data. The estimated ionospheric results were compared with those of IAACs, and the averaged Root Mean Squares (RMS) of Total Electron Content (TEC) differences for different solutions did not exceed 3 TEC Unit (TECU). Through validation by satellite altimetry, it was suggested that the newly established ionosphere had a higher precision than the IGS products. Moreover, compared with IGS ionospheric products, the newly established ionosphere showed a more accurate response to the ionosphere disturbances during the geomagnetic storms.


2015 ◽  
Vol 33 (10) ◽  
pp. 1311-1319 ◽  
Author(s):  
Z. Huang ◽  
H. Yuan

Abstract. The ionospheric slab thickness is defined as the ratio of the total electron content (TEC) to the ionospheric F2 layer peak electron density (NmF2). In this study, the slab thickness is determined by measuring the ionospheric TEC from dual-frequency Global Positioning System (GPS) data and the NmF2 from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC). A statistical analysis of the diurnal, seasonal and spatial variation in the ionospheric slab thickness is presented along the longitude of 120° E in China and its adjacent region during the recent solar minimum phase (2007–2009). The diurnal ratio, defined as the maximum slab thickness to the minimum slab thickness, and the night-to-day ratio, defined as the slab thickness during daytime to the slab thickness during night-time, are both analysed. The results show that the TEC of the northern crest is greater in winter than in summer, whereas NmF2 is greater in summer than in winter. A pronounced peak of slab thickness occurs during the post-midnight (00:00–04:00 LT) period, when the peak electron density is at the lowest level. A large diurnal ratio exists at the equatorial ionization anomaly, and a large night-to-day ratio occurs near the equatorial latitudes and mid- to high latitudes. It is found that the behaviours of the slab thickness and the F2 peak altitude are well correlated at the latitudes of 30–50° N and during the period of 10:00–16:00 LT. This current study is useful for improvement of the regional model and accurate calculation of the signal delay of radio waves propagating through the ionosphere.


2019 ◽  
Vol 94 ◽  
pp. 01001
Author(s):  
Oliver Jukić ◽  
Nenad Sikirica ◽  
Ivan Rumora ◽  
Mia Filić

Satellite navigation is a global utility and an essential component of national infrastructure. Disruptions of GNSS PNT services may be considered a threat to society and civilisation in general. Natural hazards may cause the conditions that disrupt or temporarily deny GNSS PNT services. As a contributor to ionospheric dynamics, volcanic activity is considered a source of GNSS positioning performance degradation. Here we studied the 2011 Puyehue-Cordon Caulle event, the largest 21st century volcanic eruption so far, in terms of its contribution to formation of Total Electron Content (TEC), the source of ionosphere-caused GNSS positioning error, and the effects the event made on GPS positioning accuracy. TEC values were derived from dual-frequency GPS observations collected experimentally at the International GNSS Service Network reference stations in Santiago, central Chile closest to the Puyehue-Cordon Caulle volcano. We identified considerable anomalous behaviour of TEC dynamics prior to, during and after the volcanic eruption, and examined the extent to which it affected GPS positioning accuracy. The research presented here will continue with the aim of characterisation of TEC anomalous dynamics around the eruption, and its effects on GNSS positioning performance.


2017 ◽  
Vol 59 (6) ◽  
Author(s):  
Mohammad Ali Sharifi ◽  
Saeed Farzaneh

<p>The free electrons in the ionosphere have a strong impact on the propagation of radio waves. When the signals pass through the ionosphere, both their group and phase velocity are disturbed. Several space geodetic techniques such as satellite altimetry, low Earth orbit (LEO) satellite and very long baseline interferometry (VLBI) can be used to model the total electron content. At present, the classical input data for development of ionospheric models are based on dual-frequency GPS observations, However, a major problem with this observation type is the nonuniform distribution of the terrestrial GPS reference stations with large gaps notably over the sea surface and ocean where only some single stations are located on islands, leading to lower the precision of the model over these areas. In these regions the dual-frequency satellite altimeters provide precise information about the parameters of the ionosphere. Combination of GPS and satellite altimetry observations allows making best use of the advantages of their different spatial and temporal distributions. In this study, the local ionosphere modeling was done by the combination of space geodetic observations using spherical Slepian function. The combination of the data from ground GPS observations over the western part of the USA and the altimetry mission Jason-2 was performed on the normal equation level in the least-square procedure and a least-square variance component estimation (LS-VCE) was applied to take into account the different accuracy levels of the observations. The integrated ionosphere model is more accurate and more reliable than the results derived from the ground GPS observations over the oceans.</p>


1996 ◽  
Vol 14 (1) ◽  
pp. 11-19 ◽  
Author(s):  
N. Zarraoa ◽  
E. Sardón

Abstract. The Global Positioning System (GPS) observables are affected by the ionosphere. The dispersive nature of this effect and the use of two frequencies in the GPS observations make possible to measure the ionospheric total electron content (TEC) from dual frequency GPS data. In this work we test the concept of permanent monitoring of TEC using a network of GPS receivers at high latitudes. We have used GPS data from five permanent receivers in Scandinavia, from 1-30 January 1994, with geographic latitudes ranging from 57.4°N to 78.9°N. The results show the capability of the method to monitor the evolution of TEC as a function of time and geographical location. We have detected night-time enhancements almost every night for some of the stations, and we have also been able to produce maps of the instantaneous TEC as a function of both latitude and longitude around the GPS network. We also present some of the current limitations in the use of GPS for estimating TEC at high latitudes such as the difficulties in solving for cycle-slips, and the necessity of reliable values for the receiver and satellite differential instrumental biases.


Sign in / Sign up

Export Citation Format

Share Document