scholarly journals ZnO Composite Graphene Coating Micro-Fiber Interferometer for Ultraviolet Detection

Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1478 ◽  
Author(s):  
Tao Shen ◽  
Xiaoshuang Dai ◽  
Daqing Zhang ◽  
Wenkang Wang ◽  
Yue Feng

A simple and reliable ultraviolet sensing method with high sensitivity is proposed. ZnO and ZnO composite graphene are successfully prepared by the hydrothermal method. The optical fiber sensor is fabricated by coating the single-mode-taper multimode-single-mode (STMS) with different shapes of ZnO. The effects of the sensitivity of ultraviolet sensors are further investigated. The results show that the sensor with ZnO nanosheets exhibits a higher sensitivity of 357.85 pm/nW·cm−2 for ultraviolet sensing ranging from 0 to 4 nW/cm2. The ultraviolet characteristic of STMS coated flake ZnO composite graphene has been demonstrated with a sensitivity of 427.76 pm/nW·cm−2. The combination of sensitive materials and optical fiber sensing technology provides a novel and convenient platform for ultraviolet detection technology.

2020 ◽  
Vol 307 ◽  
pp. 84-89
Author(s):  
Aisyah Hanim Surani ◽  
Affa Rozana Abdul Rashid ◽  
N. Arsad ◽  
Amna Afiqah Nasution Hakim

An optimized study of tapered polymer optical fiber (POF) for measurement of different concentration of ethanol in deionized water (0.5%-3.5%) is proposed and demonstrated. This sensor operated based on evanescent wave absorption principle. The cladding of PMMA based POF is removed using organic solvents which can be used to create tapered POF. The unclad length around 1 cm and 3 cm as well as the waist diameters of POF in the range of 5 mm and 8 mm were compared for their efficiency as an ethanol sensor based on power output ratio values. Tapered POF with smaller waist diameter and longer tapered length showed higher sensitivity as ethanol sensor. Therefore, by tailoring the length and tapered diameter of POF, high sensitivity of ethanol sensor can be fabricated.


2012 ◽  
Vol 8 (10) ◽  
pp. 310797 ◽  
Author(s):  
Xuefeng Zhao ◽  
Jie Lu ◽  
Ruicong Han ◽  
Xianglong Kong ◽  
Yanhong Wang ◽  
...  

The paper reports the application of the distributed optical fiber sensing technology and the FBG sensing technology in bridge strain monitoring; the overall changeable characteristics of the whole structure can be obtained through the distributed optical fiber sensing technology (BOTDA), meanwhile the accurate information of local important parts of the structure can be obtained through the optical fiber Bragg grating sensor (FBG), which can improve the accuracy of the monitoring. FBG sensor has a high sensitivity, but it can only realize the measurement of local discrete points for the quasidistributed sensing. BOTDA can realize the long distance and distributed measurement, but its spatial resolution is not high. FBG and BOTDA were applied together in bridge monitoring in this test, taking full advantage of the distributed BOTDA on the overall strain measurements of the structure, as well as monitoring the key parts by the arrangement of FBG. The combined application of BOTDA and FBG can achieve the overall monitoring from point to line and then to the surface and, therefore, obtain more comprehensive information on the strain of the test structure.


2021 ◽  
Vol 252 ◽  
pp. 02014
Author(s):  
Jie Zhang ◽  
Yan Xie ◽  
Zehua Zhang ◽  
Le Lv ◽  
Zhencheng Tan

The operation environment of the transmission line directly affects the operation safety of the transmission line. This article studied a FBG temperature and humidity sensor based on optical fiber sensing technology for transmission lines. Firstly, this paper studies the packaging method of the sensor, then designs the corresponding installation fixture, and gives its installation diagram. Finally, the performance of the FBG is tested in the experimental box and the national optoelectronic information product quality supervision and inspection center, and the test results show that the performance of the FBG temperature and humidity sensor is better.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1942
Author(s):  
Xiaoqing Zeng ◽  
Yang Xiang ◽  
Qianshan Liu ◽  
Liang Wang ◽  
Qianyun Ma ◽  
...  

Protein is an important component of all the cells and tissues of the human body and is the material basis of life. Its content, sequence, and spatial structure have a great impact on proteomics and human biology. It can reflect the important information of normal or pathophysiological processes and promote the development of new diagnoses and treatment methods. However, the current techniques of proteomics for protein analysis are limited by chemical modifications, large sample sizes, or cumbersome operations. Solving this problem requires overcoming huge challenges. Nanopore single molecule detection technology overcomes this shortcoming. As a new sensing technology, it has the advantages of no labeling, high sensitivity, fast detection speed, real-time monitoring, and simple operation. It is widely used in gene sequencing, detection of peptides and proteins, markers and microorganisms, and other biomolecules and metal ions. Therefore, based on the advantages of novel nanopore single-molecule detection technology, its application to protein sequence detection and structure recognition has also been proposed and developed. In this paper, the application of nanopore single-molecule detection technology in protein detection in recent years is reviewed, and its development prospect is investigated.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3766
Author(s):  
Miguel Soriano-Amat ◽  
David Fragas-Sánchez ◽  
Hugo F. Martins ◽  
David Vallespín-Fontcuberta ◽  
Javier Preciado-Garbayo ◽  
...  

In recent years, the use of highly flexible wings in aerial vehicles (e.g., aircraft or drones) has been attracting increasing interest, as they are lightweight, which can improve fuel-efficiency and distinct flight performances. Continuous wing monitoring can provide valuable information to prevent fatal failures and optimize aircraft control. In this paper, we demonstrate the capabilities of a distributed optical fiber sensor based on time-expanded phase-sensitive optical time-domain reflectometry (TE-ΦOTDR) technology for structural health monitoring of highly flexible wings, including static (i.e., bend and torsion), and dynamic (e.g., vibration) structural deformation. This distributed sensing technology provides a remarkable spatial resolution of 2 cm, with detection and processing bandwidths well under the MHz, arising as a novel, highly efficient monitoring methodology for this kind of structure. Conventional optical fibers were embedded in two highly flexible specimens that represented an aircraft wing, and different bending and twisting movements were detected and quantified with high sensitivity and minimal intrusiveness.


2021 ◽  
Vol 32 ◽  
Author(s):  
Binh Pham Thanh ◽  
Thuy Van Nguyen ◽  
Van Hoi Pham ◽  
Huy Bui ◽  
Thi Hong Cam Hoang ◽  
...  

In this paper, we report a new type of refractometer based on a D-shaped fiber Bragg grating (FBG) integrated in a loop-mirror optical fiber laser. This proposed sensor is used in wavelength interrogation method, in which the D-shaped FBG is applied as a refractive index (RI) sensing probe and a mirror to select mode of laser. The D-shaped FBG is prepared by the removal of a portion of the fiber cladding covering the FBG by means of side-polishing technique. The D-shaped FBG sensing probe integrated in a loop-mirror optical fiber laser with saturated pump technique, the characteristics of sensing signals have been improved to obtain stable intensity, narrower bandwidth and higher optical signal-to-noise ratio compare to normal reflection configuration. The limit of detection (LOD) of this sensor can be achieved to 2.95 x 10-4 RIU in the refractive index (RI) range of 1.42-1.44. Accordingly, we believe that the proposed refractometer has a huge potential for applications in biochemical-sensing technique.


Sign in / Sign up

Export Citation Format

Share Document