scholarly journals Impact Damage Evaluation in Composite Structures Based on Fusion of Results of Ultrasonic Testing and X-ray Computed Tomography

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1867 ◽  
Author(s):  
Andrzej Katunin ◽  
Angelika Wronkowicz-Katunin ◽  
Krzysztof Dragan

Barely visible impact damage (BVID) is one of the most dangerous types of structural damage in composites, since in most practical cases the application of advanced non-destructive testing (NDT) methods is required to detect and identify it. Due to its character of propagation, there are minor signs of structural damage on a surface, while the internal damage can be broad and complex both in the point of view of fracture mechanisms and resulting geometry of damage. The most common NDT method applied e.g., in aircraft inspections is ultrasonic testing (UT), which enables effective damage detection and localization in various environments. However, the results of such inspections are usually misestimated with respect to the true damage extent, and the quantitative analysis is biased by an error. In order to determine the estimation error a comparative analysis was performed on NDT results obtained for artificially damaged carbon fiber-reinforced composite structures using two UT methods and X-ray computed tomography (CT). The latter method was considered here as the reference one, since it gives the best spatial resolution and estimation accuracy of internal damage among the available NDT methods. Fusing the NDT results for a set of pre-damaged composite structures with various energy values of impact and various types of impactor tips applied for introducing damage, the evaluation of estimation accuracy of UT was possible. The performed analysis allowed for evaluation of relations between UT and X-ray CT NDT results and for proposal of a correcting factor for UT results for BVID in the analyzed composite structures.

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8342
Author(s):  
Angelika Wronkowicz-Katunin ◽  
Andrzej Katunin ◽  
Marko Nagode ◽  
Jernej Klemenc

The problem of characterizing the structural residual life is one of the most challenging issues of the damage tolerance concept currently applied in modern aviation. Considering the complexity of the internal architecture of composite structures widely applied for aircraft components nowadays, as well as the additional complexity related to the appearance of barely visible impact damage, prediction of the structural residual life is a demanding task. In this paper, the authors proposed a method based on detection of structural damage after low-velocity impact loading and its classification with respect to types of acting stress on constituents of composite structures using the developed processing algorithm based on segmentation of 3D X-ray computed tomograms using the rebmix package, real-oriented dual-tree wavelet transform and supporting image processing procedures. The presented algorithm allowed for accurate distinguishing of defined types of damage from X-ray computed tomograms with strong robustness to noise and measurement artifacts. The processing was performed on experimental data obtained from X-ray computed tomography of a composite structure with barely visible impact damage, which allowed better understanding of fracture mechanisms in such conditions. The gained knowledge will allow for a more accurate simulation of structural damage in composite structures, which will provide higher accuracy in predicting structural residual life.


2021 ◽  
pp. 102401
Author(s):  
Ercan Cakmak ◽  
Maxim N. Gussev ◽  
Thomas R. Watkins ◽  
David J. Arregui-Mena ◽  
Kurt A. Terrani

Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4629 ◽  
Author(s):  
Wronkowicz-Katunin ◽  
Katunin ◽  
Dragan

The occurrence of barely visible impact damage (BVID) in aircraft composite components and structures being in operation is a serious problem, which threatens structural safety of an aircraft, and should be timely detected and, if necessary, repaired according to the obligatory regulations of currently applied maintenance methodologies. Due to difficulties with a proper detection of such a type of damage even with non-destructive testing (NDT) methods as well as manual evaluation of the testing results, supporting algorithms for post-processing of these results seem to be of a high interest for aircraft maintenance community. In the following study, the authors proposed new approaches for BVID reconstruction based on results of ultrasonic and X-ray computed tomographic testing using authored advanced image processing algorithms. The studies were performed on real composite structures taking into consideration failure mechanisms occurring during impact damaging. The developed algorithms allow extracting relevant diagnostic information both from ultrasonic B-and C-Scans as well as from tomographic 3D arrays used for the validation of ultrasonic reconstructed damage locations, which allows for a significant improvement of the detectability of BVID in tested structures. The developed approach can be especially useful for NDT operators evaluating the results of structural NDT inspections.


2019 ◽  
Author(s):  
Daniel Sparkman ◽  
Sarah Wallentine ◽  
Mark Flores ◽  
John Wertz ◽  
John Welter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document