scholarly journals Latency Compensated Visual-Inertial Odometry for Agile Autonomous Flight

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2209 ◽  
Author(s):  
Kyuman Lee ◽  
Eric N. Johnson

In visual-inertial odometry (VIO), inertial measurement unit (IMU) dead reckoning acts as the dynamic model for flight vehicles while camera vision extracts information about the surrounding environment and determines features or points of interest. With these sensors, the most widely used algorithm for estimating vehicle and feature states for VIO is an extended Kalman filter (EKF). The design of the standard EKF does not inherently allow for time offsets between the timestamps of the IMU and vision data. In fact, sensor-related delays that arise in various realistic conditions are at least partially unknown parameters. A lack of compensation for unknown parameters often leads to a serious impact on the accuracy of VIO systems and systems like them. To compensate for the uncertainties of the unknown time delays, this study incorporates parameter estimation into feature initialization and state estimation. Moreover, computing cross-covariance and estimating delays in online temporal calibration correct residual, Jacobian, and covariance. Results from flight dataset testing validate the improved accuracy of VIO employing latency compensated filtering frameworks. The insights and methods proposed here are ultimately useful in any estimation problem (e.g., multi-sensor fusion scenarios) where compensation for partially unknown time delays can enhance performance.

2019 ◽  
Vol 36 (6) ◽  
pp. 2111-2130
Author(s):  
Yamna Ghoul

Purpose This study/paper aims to present a separable identification algorithm for a multiple input single output (MISO) continuous time (CT) hybrid “Box–Jenkins”. Design/methodology/approach This paper proposes an optimal method for the identification of MISO CT hybrid “Box–Jenkins” systems with unknown time delays by using the two-stage recursive least-square (TS-RLS) identification algorithm. Findings The effectiveness of the proposed scheme is shown with application to a simulation example. Originality/value A two-stage recursive least-square identification method is developed for multiple input single output continuous time hybrid “Box–Jenkins” system with multiple unknown time delays from sampled data. The proposed technique allows the division of the global CT hybrid “Box–Jenkins” system into two fictitious subsystems: the first one contains the parameters of the system model, including the multiple unknown time delays, and the second contains the parameters of the noise model. Then the TS-RLS identification algorithm can be applied easily to estimate all the parameters of the studied system.


Author(s):  
Thomas Smith ◽  
Vidya K. Nandikolla

In the sport of basketball, it is important to practice shooting the ball to develop the skill of making the shot in the basket at a high efficiency. Making shots at a high efficiency allows the player to succeed at a high level in the sport. The main focus of the paper describes the design and development of an automatic basketball rebound (ABR) system. The developed ABR provides a system that will launch the ball back to the player at any position on the court within a 50-foot radius. This is accomplished by a variable spring loaded launching mechanism that will compress a spring, depending on the players location, to generate the appropriate force required to launch the ball back to the player. The novel launching mechanism developed is mounted to a rotary table that ensures the launching mechanism is in the correct orientation with the player once the ball is launched. The player is outfitted with an inertial measurement unit to track their position using a method known as dead reckoning. This information is relayed back to a microcontroller that determines the system response. The ABR system is made from lightweight materials and is compact such that it is easy to move around compared to its predecessors.


Sign in / Sign up

Export Citation Format

Share Document