scholarly journals Wireless Charging System Using Resonant Inductor in Class E Power Amplifier for Electronics and Sensors

Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2801
Author(s):  
Feng Wen ◽  
Xingchen Cheng ◽  
Qiang Li ◽  
Jianqiao Ye

This study aims to solve a problem that exists with impedance matching networks in terms of extra cost and power loss of electronic components in a four-coil wireless power transfer (WPT) system using class E power amplifier as power supply, which is not conducive to the improvement of system efficiency and output power. A design method of sharing the resonant inductor in class E power amplifier and the excitation coil in the four-coil WPT system is proposed. This method comprehensively considers the output power and transfer efficiency of the system, the number of coil turns, coil size and many other factors. Compared with the traditional four-coil system using a class E power amplifier as a power supply, the proposed method simplified the system structure by leaving out a resonant inductor and load matching circuit, which can reduce the power loss of system and improve efficiency. Moreover, the precisely tuning of resonant inductor was not necessary, which improved the stability of the system. The correctness and feasibility of the parameter design method were verified by experiments. The experimental results showed that the output power of the system was increased by 18.7%, the efficiency was increased by 11%, and the transmission distance was up to 0.7 m, which is suitable for wireless power supply of electronics and sensors.

2014 ◽  
Vol 61 (10) ◽  
pp. 2978-2986 ◽  
Author(s):  
Shunta Iguchi ◽  
Akira Saito ◽  
Kazunori Watanabe ◽  
Takayasu Sakurai ◽  
Makoto Takamiya

2021 ◽  
Vol 19 ◽  
pp. 28-37
Author(s):  
Muhammad Noaman Zahid ◽  
Jianliang Jiang ◽  
Heng Lu ◽  
Hengli Zhang

In Radio Frequency (RF) communication, a Power Amplifier (PA) is used to amplify the signal at the required power level with less utilization of Direct Current (DC) power. The main characteristic of class-E PA is sturdy nonlinearity due to the switching mode action. In this study, a modified design of class-E PA with balanced Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) and high output power for Electronic Article Surveillance (EAS) Radio Frequency Identification (RFID) application is presented. MOSFETs are adjusted to have high output performance of about 80% for RFID-based EAS system. A matching network is also proposed for accurate matching because there are differences in the behavior between RF waves and low frequency waves. The design of a matching network is a tradeoff among the complexity, adjustability, implementation, and bandwidth for the required output power and frequency. The implemented PA is capable of providing 44.8 dBm output power with Power-Added Efficiency (PAE) of 78.5% at 7.7 MHz to 8.7 MHz.


Author(s):  
Mu-Chun Wang ◽  
Zhen-Ying Hsieh ◽  
Chieu-Ying Hsu ◽  
Shuang-Yuan Chen ◽  
Heng-Sheng Huang

In this paper, we present a single-stage class-E power amplifier with multiple-gated shape as well as 0.18μm complementary metal-oxide-semiconductor (CMOS) process for 2.4GHz Industry-Science-Medicine (ISM) band. This power amplifier is able to be easily integrated into the system-on-chip (SoC) circuit. For the competition of lower cost and high integration in marketing concern, CMOS technology is fundamentally better than GaAs technology. We adopt the Advanced Design System software in circuit simulation coming from Agilent Company through the Chip Implementation Center (CIC) channel plus TSMC 0.18 μm device models. The simulation results with temperature effect, show the good performance such as an output power achievement of +22dBm under a 1.8V supply voltage; the power-added efficiency (PAE) is over 30%; the output impedance (S22) and the input impedance (S11) are fully lower than −15dB; the power gain (S21) is +11dB; the inverse isolation (S12) is below −26dB. This amplifier reaches its 1-dB compression point at an output level of 16.5dBm related to the input power 6.5dBm position. The output power with temperature variation from 0°C to 125°C depicts an acceptable spec. range, too.


Sign in / Sign up

Export Citation Format

Share Document