scholarly journals Demosaicing of CFA 3.0 with Applications to Low Lighting Images

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3423 ◽  
Author(s):  
Chiman Kwan ◽  
Jude Larkin ◽  
Bulent Ayhan

Low lighting images usually contain Poisson noise, which is pixel amplitude-dependent. More panchromatic or white pixels in a color filter array (CFA) are believed to help the demosaicing performance in dark environments. In this paper, we first introduce a CFA pattern known as CFA 3.0 that has 75% white pixels, 12.5% green pixels, and 6.25% of red and blue pixels. We then present algorithms to demosaic this CFA, and demonstrate its performance for normal and low lighting images. In addition, a comparative study was performed to evaluate the demosaicing performance of three CFAs, namely the Bayer pattern (CFA 1.0), the Kodak CFA 2.0, and the proposed CFA 3.0. Using a clean Kodak dataset with 12 images, we emulated low lighting conditions by introducing Poisson noise into the clean images. In our experiments, normal and low lighting images were used. For the low lighting conditions, images with signal-to-noise (SNR) of 10 dBs and 20 dBs were studied. We observed that the demosaicing performance in low lighting conditions was improved when there are more white pixels. Moreover, denoising can further enhance the demosaicing performance for all CFAs. The most important finding is that CFA 3.0 performs better than CFA 1.0, but is slightly inferior to CFA 2.0, in low lighting images.

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1444 ◽  
Author(s):  
Chiman Kwan ◽  
Jude Larkin

It is commonly believed that having more white pixels in a color filter array (CFA) will help the demosaicing performance for images collected in low lighting conditions. However, to the best of our knowledge, a systematic study to demonstrate the above statement does not exist. We present a comparative study to systematically and thoroughly evaluate the performance of demosaicing for low lighting images using two CFAs: the standard Bayer pattern (aka CFA 1.0) and the Kodak CFA 2.0 (RGBW pattern with 50% white pixels). Using the clean Kodak dataset containing 12 images, we first emulated low lighting images by injecting Poisson noise at two signal-to-noise (SNR) levels: 10 dBs and 20 dBs. We then created CFA 1.0 and CFA 2.0 images for the noisy images. After that, we applied more than 15 conventional and deep learning based demosaicing algorithms to demosaic the CFA patterns. Using both objectives with five performance metrics and subjective visualization, we observe that having more white pixels indeed helps the demosaicing performance in low lighting conditions. This thorough comparative study is our first contribution. With denoising, we observed that the demosaicing performance of both CFAs has been improved by several dBs. This can be considered as our second contribution. Moreover, we noticed that denoising before demosaicing is more effective than denoising after demosaicing. Answering the question of where denoising should be applied is our third contribution. We also noticed that denoising plays a slightly more important role in 10 dBs signal-to-noise ratio (SNR) as compared to 20 dBs SNR. Some discussions on the following phenomena are also included: (1) why CFA 2.0 performed better than CFA 1.0; (2) why denoising was more effective before demosaicing than after demosaicing; and (3) why denoising helped more at low SNRs than at high SNRs.


2020 ◽  
Vol 11 (5) ◽  
pp. 37-60
Author(s):  
Chiman Kwan ◽  
Jude Larkin

In modern digital cameras, the Bayer color filter array (CFA) has been widely used. It is also widely known as CFA 1.0. However, Bayer pattern is inferior to the red-green-blue-white (RGBW) pattern, which is also known as CFA 2.0, in low lighting conditions in which Poisson noise is present. It is well known that demosaicing algorithms cannot effectively deal with Poisson noise and additional denoising is needed in order to improve the image quality. In this paper, we propose to evaluate various conventional and deep learning based denoising algorithms for CFA 2.0 in low lighting conditions. We will also investigate the impact of the location of denoising, which refers to whether the denoising is done before or after a critical step of demosaicing. Extensive experiments show that some denoising algorithms can indeed improve the image quality in low lighting conditions. We also noticed that the location of denoising plays an important role in the overall demosaicing performance.


Author(s):  
Suvit Poomrittigul ◽  
Masanori Ogawa ◽  
Masahiro Iwahashi ◽  
Hitoshi Kiya

In this paper, we propose a reversible color transform (RCT) for color images acquired through a Bayer pattern color filter array. One existing RCT with fixed coefficients is simple to implement. However, it is not adaptive to each of input images. Another existing RCT based on eigenvector of covariance matrix of color components, which is equivalent to Karhunen–Loève transform (KLT), is adaptive. However, it requires heavy computational load. We remove a redundant part of this existing method, utilizing fixed statistical relation between two green components at different locations. Comparing to the KLT-based existing RCT, it was observed that the proposed RCT keeps adaptability and has better coding performance, even though its computational load is reduced.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 600
Author(s):  
Meidong Xia ◽  
Chengyou Wang ◽  
Wenhan Ge

In this paper, we propose a weights-based image demosaicking algorithm which is based on the Bayer pattern color filter array (CFA). When reconstructing the missing G components, the proposed algorithm uses weights based on posteriori gradients to mitigate color artifacts and distortions. Furthermore, the proposed algorithm makes full use of the correlation of R–B channels in high frequency when interpolating R/B values at B/R positions. Experimental results show that the proposed algorithm is superior to previous similar algorithms in composite peak signal-to-noise ratio (CPSNR) and subjective visual effect. The biggest advantage of the proposed algorithm is the use of posteriori gradients and the correlation of R–B channels in high frequency.


2013 ◽  
Vol 705 ◽  
pp. 313-318
Author(s):  
Gwang Gil Jeon

In the last two decades, super-resolution and demosaicking have been researched actively. Generally, digital camera suffers from both color filtering and low spatial resolution. Therefore it is worth studying above issues. In this paper, we design filters to conduct super-resolution for digital camera. Bayer pattern has been widely used in digital camera. In this paper, we conduct experiments on X-Trans color filter array (CFA) pattern. Experimental results confirm that the proposed filters are effective for solving demosaicking issues.


2010 ◽  
Author(s):  
Jr Maschal ◽  
Young Robert A. ◽  
Reynolds S. S. ◽  
Krapels Joe ◽  
Fanning Keith ◽  
...  

2007 ◽  
Author(s):  
Vladimir V. Lukin ◽  
Nikolay N. Ponomarenko ◽  
Andriy V. Bazhyna ◽  
Karen O. Egiazarian

Sign in / Sign up

Export Citation Format

Share Document