scholarly journals NTRU-Like Random Congruential Public-Key Cryptosystem for Wireless Sensor Networks

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4632
Author(s):  
Anas Ibrahim ◽  
Alexander Chefranov ◽  
Nagham Hamad ◽  
Yousef-Awwad Daraghmi ◽  
Ahmad Al-Khasawneh ◽  
...  

Wireless sensor networks (WSNs) are the core of the Internet of Things and require cryptographic protection. Cryptographic methods for WSN should be fast and consume low power as these networks rely on battery-powered devices and microcontrollers. NTRU, the fastest and secure public key cryptosystem, uses high degree, N, polynomials and is susceptible to the lattice basis reduction attack (LBRA). Congruential public key cryptosystem (CPKC), proposed by the NTRU authors, works on integers modulo q and is easily attackable by LBRA since it uses small numbers for the sake of the correct decryption. Herein, RCPKC, a random congruential public key cryptosystem working on degree N=0 polynomials modulo q, is proposed, such that the norm of a two-dimensional vector formed by its private key is greater than q. RCPKC works as NTRU, and it is a secure version of insecure CPKC. RCPKC specifies a range from which the random numbers shall be selected, and it provides correct decryption for valid users and incorrect decryption for an attacker using LBRA by Gaussian lattice reduction. RCPKC asymmetric encryption padding (RAEP), similar to its NTRU analog, NAEP, is IND-CCA2 secure. Due to the use of big numbers instead of high degree polynomials, RCPKC is about 27 times faster in encryption and decryption than NTRU. Furthermore, RCPKC is more than three times faster than the most effective known NTRU variant, BQTRU. Compared to NTRU, RCPKC reduces energy consumption at least thirty times, which allows increasing the life-time of unattended WSNs more than thirty times.

Author(s):  
Anas Ibrahim ◽  
Alexander Chefranov ◽  
Nagham Hamad ◽  
Yousef-Awwad Daraghmi ◽  
Ahmad Al-Khasawneh ◽  
...  

Wireless Sensor Networks (WSN) are the core of Internet of Things and require cryptographic protection due to the increase number of attacks. Cryptographic methods for WSN should be fast and consume low power as these networks consist of battery-powered devices and constrained microcontrollers. NTRU, the fastest and secure public key cryptosystem, uses high degree polynomials, and is susceptible to the lattice basis reduction attack (LBRA). CPKC, proposed by NTRU authors, works on integers modulo $q$ and is easily attackable by LBRA since it uses small numbers for the sake of the correct decryption. Herein, RCPKC, a random congruential public key cryptosystem working on integers modulo $q$ is proposed, such that the norm of a two-dimensional vector formed by its private key is greater than $\sqrt{q}$. RCPKC works similar to NTRU, and it is a secure version of insecure CPKC. RCPKC specifies a range from which the random numbers shall be selected, and it provides correct decryption for valid users and incorrect decryption for an attacker using LBRA by Gaussian lattice reduction. Because of its resistance to LBRA, RCPKC is more secure. Simultaneously, due to the use of big numbers instead of high degree polynomials, RCPKC is about 24 (7) times faster in encryption (decryption) than NTRU. Also, RCPKC is more three times faster than the most effective known NTRU variant, BQTRU. Compared to NTRU, RCPKC reduces energy consumption at least seven times that allows increasing life-time of unattended WSN more than seven times.


Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2864 ◽  
Author(s):  
Utku Gulen ◽  
Abdelrahman Alkhodary ◽  
Selcuk Baktir

As wireless sensor networks (WSNs) become more widespread, potential attacks against them also increase and applying cryptography becomes inevitable to make secure WSN nodes. WSN nodes typically contain only a constrained microcontroller, such as MSP430, Atmega, etc., and running public key cryptography on these constrained devices is considered a challenge. Since WSN nodes are spread around in the field, the distribution of the shared private key, which is used in a symmetric key cryptographic algorithm for securing communications, is a problem. Thus, it is necessary to use public key cryptography to effectively solve the key distribution problem. The RSA cryptosystem, which requires at least a 1024-bit key, is the most widely used public key cryptographic algorithm. However, its large key size is considered a drawback for resource constrained microcontrollers. On the other hand, RSA allows for extremely fast digital signature generation which may make it desirable in applications where messages transmitted by sensor nodes need to be authenticated. Furthermore, for compatibility with an existing communication infrastructure, it may be desirable to adopt RSA in a WSN setting. With this work, we show that, in spite of its long key size, RSA is applicable for wireless sensor networks when optimized arithmetic, low-level coding and some acceleration algorithms are used. We pick three versions of the MSP430 microcontroller, which is used widely on wireless sensor network nodes, and implement 1024-bit RSA on them. Our implementation achieves 1024-bit RSA encryption and decryption operations on MSP430 in only 0 . 047 s and 1 . 14 s, respectively. In order to achieve these timings, we utilize several acceleration techniques, such as the subtractive Karatsuba-Ofman, Montgomery multiplication, operand scanning, Chinese remainder theorem and sliding window method. To the best of our knowledge, our timings for 1024-bit RSA encryption and decryption operations are the fastest reported timings in the literature for the MSP430 microcontroller.


Author(s):  
Omkar Singh ◽  
Vinay Rishiwal

Background & Objective: Wireless Sensor Network (WSN) consist of huge number of tiny senor nodes. WSN collects environmental data and sends to the base station through multi-hop wireless communication. QoS is the salient aspect in wireless sensor networks that satisfies end-to-end QoS requirement on different parameters such as energy, network lifetime, packets delivery ratio and delay. Among them Energy consumption is the most important and challenging factor in WSN, since the senor nodes are made by battery reserved that tends towards life time of sensor networks. Methods: In this work an Improve-Energy Aware Multi-hop Multi-path Hierarchy (I-EAMMH) QoS based routing approach has been proposed and evaluated that reduces energy consumption and delivers data packets within time by selecting optimum cost path among discovered routes which extends network life time. Results and Conclusion: Simulation has been done in MATLAB on varying number of rounds 400- 2000 to checked the performance of proposed approach. I-EAMMH is compared with existing routing protocols namely EAMMH and LEACH and performs better in terms of end-to-end-delay, packet delivery ratio, as well as reduces the energy consumption 13%-19% and prolongs network lifetime 9%- 14%.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2417
Author(s):  
Andrzej Michalski ◽  
Zbigniew Watral

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Jun Huang ◽  
Liqian Xu ◽  
Cong-cong Xing ◽  
Qiang Duan

The design of wireless sensor networks (WSNs) in the Internet of Things (IoT) faces many new challenges that must be addressed through an optimization of multiple design objectives. Therefore, multiobjective optimization is an important research topic in this field. In this paper, we develop a new efficient multiobjective optimization algorithm based on the chaotic ant swarm (CAS). Unlike the ant colony optimization (ACO) algorithm, CAS takes advantage of both the chaotic behavior of a single ant and the self-organization behavior of the ant colony. We first describe the CAS and its nonlinear dynamic model and then extend it to a multiobjective optimizer. Specifically, we first adopt the concepts of “nondominated sorting” and “crowding distance” to allow the algorithm to obtain the true or near optimum. Next, we redefine the rule of “neighbor” selection for each individual (ant) to enable the algorithm to converge and to distribute the solutions evenly. Also, we collect the current best individuals within each generation and employ the “archive-based” approach to expedite the convergence of the algorithm. The numerical experiments show that the proposed algorithm outperforms two leading algorithms on most well-known test instances in terms of Generational Distance, Error Ratio, and Spacing.


Sign in / Sign up

Export Citation Format

Share Document