scholarly journals Intelligent Force-Measurement System Use in Shock Tunnel

Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6179
Author(s):  
Yunpeng Wang ◽  
Zonglin Jiang

The inertial vibration of the force measurement system (FMS) has a large influence on the force measuring result of aircraft, especially on some tests carried out in high-enthalpy impulse facilities, such as in a shock tunnel. When force tests are conducted in a shock tunnel, the low-frequency vibrations of the FMS and its motion cannot be addressed through digital filtering because of the inertial forces, which are caused by the impact flow during the starting process of the shock tunnel. Therefore, this paper focuses on the dynamic characteristics of the performance of the FMS. A new method—i.e., deep-learning-based single-vector dynamic self-calibration (DL-based SV-DSC) of an impulse FMS, is proposed to increase the accuracy of aerodynamic force measurements in a shock tunnel. A deep-learning technique is used to train the dynamic model of the FMS in this study. Convolutional neural networks with a simple structure are applied to describe the dynamic modeling so that the low-frequency vibration signals are eliminated from the test results of the shock tunnel. By validation of the force test results measured in a shock tunnel, the current trained model can realize intelligent processing of the balance signals of the FMS. Based on this new method of dynamic calibration, the reliability and accuracy of force data processing are well verified.

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Andrea Cristina de Lima-Pardini ◽  
Raymundo Machado de Azevedo Neto ◽  
Daniel Boari Coelho ◽  
Catarina Costa Boffino ◽  
Sukhwinder S. Shergill ◽  
...  

2011 ◽  
Vol 383-390 ◽  
pp. 774-779
Author(s):  
Ye Min Guo ◽  
Lan Mei Wang ◽  
Rui Yong Xue

According to the requirements of measurement of plantar pressure and shear stress in the meantime, this thesis puts forward a plan to construct a new insole plantar pressure and shear stress system based on multifunction data acquisition modular and Lab VIEW. Then the hardware part and software part are designed and developed respectively. There are 3 sensors are arrayed at each measurement point, that means 3 sensors are assembled in 3 different directions of X,Y and Z . The piezoelectric ceramic type sensors are designed, manufactured and calibrated according to scientific methods. Meanwhile, the DAQ card is selected carefully. Of course, the software part is developed based on Lab VIEW. A series of tests are performed in order to validate the function of the measurement system. The results satisfy the anticipated design requirements. At last, the problems and application trend of the measurement system are predicted.


Author(s):  
Yunpeng Wang ◽  
Zonglin Jiang ◽  
Honghui Teng

Shock tunnels create very high temperature and pressure in the nozzle plenum and flight velocities up to Mach 20 can be simulated for aerodynamic testing of chemically reacting flows. However, this application is limited due to milliseconds of its test duration (generally 500 μs–20 ms). For the force test in the conventional hypersonic shock tunnel, because of the instantaneous flowfield and the short test time [1–4], the mechanical vibration of the model-balance-support (MBS) system occurs and cannot be damped during a shock tunnel run. The inertial forces lead to low frequency vibrations of the model and its motion cannot be addressed through digital filtering. This implies restriction on the model’s size and mass as its natural frequencies are inversely proportional the length scale of the model. As to the MBS system, sometimes, the lowest natural frequency of 1 kHz is required for the test time of typically 5 ms in order to get better measurement results [2]. The higher the natural frequencies, the better the justification for the neglected acceleration compensation. However, that is very harsh conditions to design a high-stiffness MBS structure, particularly a drag balance. Therefore, it is very hard to carried out the aerodynamic force test using traditional wind tunnel balances in the shock tunnel, though its test flow state with the high-enthalpy is closer to the real flight condition.


2009 ◽  
Vol 37 (1) ◽  
pp. 54-62 ◽  
Author(s):  
O. FROMENTIN ◽  
C. LASSAUZAY ◽  
S. ABI NADER ◽  
J. FEINE ◽  
R. F. De ALBUQUERQUE JUNIOR

2002 ◽  
Vol 26 (8) ◽  
pp. 1608-1614
Author(s):  
Gyeong-Pyo Ha ◽  
Jung-Su Kim ◽  
Myeong-Rae Jo ◽  
Dae-Yun O

Sign in / Sign up

Export Citation Format

Share Document