scholarly journals Piezoelectric Energy Harvesting Controlled with an IGBT H-Bridge and Bidirectional Buck–Boost for Low-Cost 4G Devices

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7039
Author(s):  
Daniel Teso-Fz-Betoño ◽  
Iñigo Aramendia ◽  
Jon Martinez-Rico ◽  
Unai Fernandez-Gamiz ◽  
Ekaitz Zulueta

In this work, a semi-submersible piezoelectric energy harvester was used to provide power to a low-cost 4G Arduino shield. Initially, unsteady Reynolds averaged Navier–Stokes (URANS)-based simulations were conducted to investigate the dynamic forces under different conditions. An adaptive differential evolution (JADE) multivariable optimization algorithm was used for the power calculations. After JADE optimization, a communication cycle was designed. The shield works in two modes: communication and power saving. The power-saving mode is active for 285 s and the communication mode for 15 s. This cycle consumes a determinate amount of power, which requires a specific piezoelectric material and, in some situations, an extra power device, such as a battery or supercapacitor. The piezoelectric device is able to work at the maximum power point using a specific Insulated Gate Bipolar Transistor (IGBT) H-bridge controlled with a relay action. For the extra power supply, a bidirectional buck–boost converter was implemented to flow the energy in both directions. This electronic circuit was simulated to compare the extra power supply and the piezoelectric energy harvester behavior. Promising results were obtained in terms of power production and energy storage. We used 0.59, 0.67 and 1.69 W piezoelectric devices to provide the energy for the 4G shield and extra power supply device.

2018 ◽  
Vol 6 (3) ◽  
pp. 13-19
Author(s):  
Isam Aameer Ibrahim ◽  
Haider TH Salim ◽  
Hasan F. Khazaal

One of the major global issues today is energy consumption. Consequently, power management was introduced in various communication technologies. For IEEE 802.11wireless communication, there is a Power Saving Mode scheme (PSM) for increase the battery life of cell phone. In this PSM, there are two key parameters: beacon period interval (BI) and listen interval(LI). In most work these values are chosen arbitrary. Here, a scheme to determine the optimal BI and LI for accomplishing the most astounding conceivable vitality proficiency is introduced. This is implemented with the application of a numerical sample to the standard IEEE 802.11 PSM and Access Point-PSM (AP-PSM) schemes. To ensure the quality of network performance analysis on the normal and change of parcel delays is doing. The well-known queuing (M/G/I) model with bulk services are utilized. After the implementation of the proposed analysis, “maximum rest plan time ratio optimal Sleep Scheme (OSS)” which is when participate stations stay in the doze mode it can be determined. In this research shows that the optimal BI and LI produce optimal OSS time ratio scheme also achieved optimal average and variance of packet delay.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3987
Author(s):  
Adam Olesiński ◽  
Zbigniew Piotrowski

In localization systems based on the emission of reference radio signals, an important issue related to the reliability of sensor operation is the problem of operating time and power of the emitted reference radio signal. There are many localization methods that have proven useful in practice and that use a reference radio signal for this purpose. In the issue of determining the location of radio emitters, various radio signal propagation models are used to determine the effective range and distance of the sensor-receiver from the radio emitter. This paper presents an adaptive power control algorithm for a transmitter, as a reference emitter, operating in power-saving mode. An important advantage of the presented solution is the adjustment of the localization system accuracy at the assumed level of energy radiated by radio emitters based on the RSSI signal received power estimation.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 3991
Author(s):  
Lorenzo Mucchi ◽  
Luca Simone Ronga ◽  
Sara Jayousi

Reducing energy consumption is one of the most important task of the approaching Internet of Things (IoT) paradigm. Existing communication standards, such as 3G/4G, use complex protocols (active mode, sleep modes) in order to address the waste of energy. These protocols are forced to transmit when one frame is only partially filled with information symbols. The hard task to adapt the power-saving mode with low latency to the discontinuity of the source is mainly due to the fact that the receiver cannot know a priori when the source has something to transmit. In this paper, we propose a modified signalling/constellation which can save energy by mapping a zero-energy symbol in the information source. This paper addresses the fundamentals of this new technique: the maximum a posteriori probability (MAP) criterion, the probability of error, the (energy) entropy, the (energy) capacity as well as the energy cost of the proposed technique are derived for the binary signalling case.


2018 ◽  
Vol 6 (11) ◽  
pp. 1800022 ◽  
Author(s):  
MinSu Kim ◽  
Heui Seok Jin ◽  
Seung Jae Lee ◽  
Yun-Ho Shin ◽  
Hyeong Gyun Ham ◽  
...  

2006 ◽  
Vol 20 (50) ◽  
pp. 11-11
Author(s):  
Christian Duffin

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 201
Author(s):  
Damiano Alizzio ◽  
Antonino Quattrocchi ◽  
Roberto Montanini

<p class="Abstract">In the interest of our society, for example in Smart City but also in other specific backgrounds, environmental monitoring is an essential activity to measure the quality of different ecosystems. In fact, the need to obtain accurate and extended measurements in space and time has considerably become relevant. In very large environments, such as marine ones, technological solutions are required for the use of smart, automatic, and self-powered devices in order to reduce human maintenance service. This work presents a simple and innovative layout for a small self-powered floating buoy, with the aim of measuring and transmitting the detected data for visualization, storage and/or elaboration. The power supply was obtained using a cantilever harvester, based on piezoelectric patches, converting the motion of ripple waves. Such type of waves is characterized by frequencies between 1.50 Hz and 2.50 Hz with oscillation between 5.0 ° and 7.0 °. Specifically, a dedicated experimental setup was created to simulate the motion of ripple waves and to evaluate the suitability of the proposed design and the performance of the used harvester. Furthermore, a dynamic analytical model for the harvester has been defined and the uncertainty correlated to the harvested power has been evaluated. Finally, the harvested voltage and power have shown how the presented buoy behaves like a frequency transformer. Hence, although the used cantilever harvester does not work in its resonant frequency, the harvested electricity undergoes a significant increase.</p><p class="Abstract"><span lang="EN-US"><br /></span></p>


Sign in / Sign up

Export Citation Format

Share Document