scholarly journals Scaling-Based Two-Step Reconstruction in Full Polarization-Compressed Hyperspectral Imaging

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7120
Author(s):  
Axin Fan ◽  
Tingfa Xu ◽  
Xi Wang ◽  
Chang Xu ◽  
Yuhan Zhang

Polarized hyperspectral images can reflect the rich physicochemical characteristics of targets. Meanwhile, the contained plentiful information also brings great challenges to signal processing. Although compressive sensing theory provides a good idea for image processing, the simplified compression imaging system has difficulty in reconstructing full polarization information. Focused on this problem, we propose a two-step reconstruction method to handle polarization characteristics of different scales progressively. This paper uses a quarter-wave plate and a liquid crystal tunable filter to achieve full polarization compression and hyperspectral imaging. According to their numerical features, the Stokes parameters and their modulation coefficients are simultaneously scaled. The first Stokes parameter is reconstructed in the first step based on compressive sensing. Then, the last three Stokes parameters with similar order of magnitude are reconstructed in the second step based on previous results. The simulation results show that the two-step reconstruction method improves the reconstruction accuracy by 7.6 dB for the parameters that failed to be reconstructed by the non-optimized method, and reduces the reconstruction time by 8.25 h without losing the high accuracy obtained by the current optimization method. This feature scaling method provides a reference for the fast and high-quality reconstruction of physical quantities with obvious numerical differences.

2018 ◽  
Vol 5 (1) ◽  
pp. 3 ◽  
Author(s):  
Yaniv Oiknine ◽  
Isaac August ◽  
Vladimir Farber ◽  
Daniel Gedalin ◽  
Adrian Stern

Hyperspectral (HS) imaging involves the sensing of a scene’s spectral properties, which are often redundant in nature. The redundancy of the information motivates our quest to implement Compressive Sensing (CS) theory for HS imaging. This article provides a review of the Compressive Sensing Miniature Ultra-Spectral Imaging (CS-MUSI) camera, its evolution, and its different applications. The CS-MUSI camera was designed within the CS framework and uses a liquid crystal (LC) phase retarder in order to modulate the spectral domain. The outstanding advantage of the CS-MUSI camera is that the entire HS image is captured from an order of magnitude fewer measurements of the sensor array, compared to conventional HS imaging methods.


2011 ◽  
Vol 135-136 ◽  
pp. 341-346
Author(s):  
Na Ding ◽  
Jiao Bo Gao ◽  
Jun Wang

A novel system of implementing target identification with hyperspectral imaging system based on acousto-optic tunable filter (AOTF) was proposed. The system consists of lens, AOTF, AOTF driver, CCD and image collection installation. Owing to the high spatial and spectral resolution, the system can operate in the spectral range from visible light to near infrared band. An experiment of detecting and recognizing of two different kinds of camouflage armets from background was presented. When the characteristic spectral wave bands are 680nm and 750nm, the two camouflage armets exhibit different spectral characteristic. The target camouflage armets in the hyperspectral images are distinct from background and the contrast of armets and background is increased. The image fusion, target segmentation and pick-up of those images with especial spectral characteristics were realized by the Hyperspectral Imaging System. The 600nm, 680nm, and 750nm images were processed by the Pseudo color fusion algorithm, thus the camouflage armets are more easily observed by naked eyes. Experimental results confirm that AOTF hyperspectral imaging system can acquire image of high contrast, and has the ability of detecting and identification camouflage objects.


LWT ◽  
2021 ◽  
Vol 138 ◽  
pp. 110678
Author(s):  
Irina Torres ◽  
Dolores Pérez-Marín ◽  
Miguel Vega-Castellote ◽  
María-Teresa Sánchez

2021 ◽  
Author(s):  
Hiroshi Ohno ◽  
Takahiro Kamikawa

AbstractThe bidirectional reflectance distribution function (BRDF) that describes an angle-resolved distribution of surface reflectance is available for characterizing surface properties of a material. A one-shot BRDF imaging system can capture an in-plane color mapping of light direction extracted from a surface BRDF distribution. A surface roughness identification method is then proposed here using the imaging system. A difference between surface properties of a matt paper and a glossy paper is experimentally shown to be detected using the method. A surface reconstruction method of an axisymmetric micro-object using the imaging system is also proposed here. The imaging system experimentally shows that it can reconstruct an axisymmetric aluminium cone surface with a height of 37 μm.


Sign in / Sign up

Export Citation Format

Share Document