scholarly journals Self-Biased Bidomain LiNbO3/Ni/Metglas Magnetoelectric Current Sensor

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7142
Author(s):  
Mirza I. Bichurin ◽  
Roman V. Petrov ◽  
Viktor S. Leontiev ◽  
Oleg V. Sokolov ◽  
Andrei V. Turutin ◽  
...  

The article is devoted to the theoretical and experimental study of a magnetoelectric (ME) current sensor based on a gradient structure. It is known that the use of gradient structures in magnetostrictive-piezoelectric composites makes it possible to create a self-biased structure by replacing an external magnetic field with an internal one, which significantly reduces the weight, power consumption and dimensions of the device. Current sensors based on a gradient bidomain structure LiNbO3 (LN)/Ni/Metglas with the following layer thicknesses: lithium niobate—500 μm, nickel—10 μm, Metglas—29 μm, operate on a linear section of the working characteristic and do not require the bias magnetic field. The main characteristics of a contactless ME current sensor: its current range measures up to 10 A, it has a sensitivity of 0.9 V/A, its current consumption is not more than 2.5 mA, and its linearity is maintained to an accuracy of 99.8%. Some additional advantages of a bidomain lithium niobate-based current sensor are the increased sensitivity of the device due to the use of the bending mode in the electromechanical resonance region and the absence of a lead component in the device.

Aerospace ◽  
2003 ◽  
Author(s):  
Nersesse Nersessian ◽  
Siu Wing Or ◽  
Gregory P. Carman

A 1200m V/cmOe magnetoelectric voltage coefficient was measured in a Terfenol-D/epoxy and PZT-5H[2-2] composite. The magnetoelectric effect is a result of a coupling between the magnetostrictive (Terfenol-D/epoxy) and piezoelectric (PZT-5H) layers. The coupling was achieved mechanically by bonding the piezoelectric layer in between two magnetostrictive layers. The maximum in magnetoelectric voltage coefficient was measured at a frequency of 8Hz and a bias magnetic field of 103kA/m. The magnetoelectric voltage coefficient was observed to be highly dependent upon the bias magnetic field.


2018 ◽  
Vol 83 (2) ◽  
pp. 20901 ◽  
Author(s):  
Ahmed Chaouki Lahrech ◽  
Bachir Abdelhadi ◽  
Mouloud Feliachi ◽  
Abdelhalim Zaoui ◽  
Mohammed Naїdjate

This paper proposes a contactless method for the identification of the electrical conductivity tensor of a carbon fiber composite materials plate using a rotating magnetic field and multi-coil eddy current sensor. This sensor consists of identical rectangular multi-coil, excited by two-phase sinusoidal current source in order to generate a rotating magnetic field and to avoid the mechanical rotation of the sensor. The fibers orientations, the longitudinal and transverse conductivities in each ply of carbon fiber composite material plate were directly determined with analysis of the impedance variation of each coil as function of its angular position. The inversion process is based on the use of artificial neural networks. The direct calculation associated with artificial neural networks makes use of 3D time-harmonic finite element method based on the A, V–A formulation.


2015 ◽  
Vol 394 ◽  
pp. 416-421 ◽  
Author(s):  
Guangming Xue ◽  
Zhongbo He ◽  
Dongwei Li ◽  
Zhaoshu Yang ◽  
Zhenglong Zhao

Author(s):  
Andrzej Rysak ◽  
Magdalena Gregorczyk

Investigations of systems with an active magnetostrictive element generally assume the presence of an external homogeneous bias magnetic field. This article, however, presents the results of a study investigating a bimorph magnetostrictive-aluminium beam vibrating in a non-homogeneous bias field. By comparing results obtained under different operating conditions of the system, the combined effect of the non-linear beam stress and the non-homogeneous external magnetic field on the dynamics of the Villari phenomenon is determined. The preliminary results prove that the application of non-linear magnetic fields to the magnetostrictive devices ensures the extension of energy harvesting bandwidth of these devices and can be used to improve their control possibilities. A study of time series and hysteresis loops provides more detailed information about the non-linear magnetization and dynamics of the system.


2009 ◽  
Vol 154 ◽  
pp. 157-161 ◽  
Author(s):  
V.P. Dyakonov ◽  
S. Piechota ◽  
K. Piotrowski ◽  
A. Szewczyk ◽  
H. Szymczak ◽  
...  

The main objective of the performed investigations was to enhance sensitivity of a current sensor to weak changes of magnetic field. New design of the sensor of current based on magnetoresistance effect – MRE (MRE = (RH - R0)/R0 , where RH is the resistance in magnetic field and R0 is the resistance without magnetic field) was developed. The sensor was produced in the form of an annular magnet with a gap, in which the (La0.7Sr0.3)0.8Мn1.2О3 manganite film possessing large negative MRE was inserted. Nominal current in a controllable electric circuit can change from a few tenths parts of ampere to a hundred of amperes. The limit detectable change of current value depends on the size of gap in the annular magnet. The operation time of sensor at current overload and short circuit is less than 0.3 sec. These magnetoresistors are thermally stable over the temperature range from (- 50 ° С) to (+ 50 ° С). Proposed sensors based on MRE can be applied in many electrical arrangements and devices.


Sign in / Sign up

Export Citation Format

Share Document