scholarly journals A Smart Biometric Identity Management Framework for Personalised IoT and Cloud Computing-Based Healthcare Services

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 552
Author(s):  
Farnaz Farid ◽  
Mahmoud Elkhodr ◽  
Fariza Sabrina ◽  
Farhad Ahamed ◽  
Ergun Gide

This paper proposes a novel identity management framework for Internet of Things (IoT) and cloud computing-based personalized healthcare systems. The proposed framework uses multimodal encrypted biometric traits to perform authentication. It employs a combination of centralized and federated identity access techniques along with biometric based continuous authentication. The framework uses a fusion of electrocardiogram (ECG) and photoplethysmogram (PPG) signals when performing authentication. In addition to relying on the unique identification characteristics of the users’ biometric traits, the security of the framework is empowered by the use of Homomorphic Encryption (HE). The use of HE allows patients’ data to stay encrypted when being processed or analyzed in the cloud. Thus, providing not only a fast and reliable authentication mechanism, but also closing the door to many traditional security attacks. The framework’s performance was evaluated and validated using a machine learning (ML) model that tested the framework using a dataset of 25 users in seating positions. Compared to using just ECG or PPG signals, the results of using the proposed fused-based biometric framework showed that it was successful in identifying and authenticating all 25 users with 100% accuracy. Hence, offering some significant improvements to the overall security and privacy of personalized healthcare systems.

2016 ◽  
pp. 399-422
Author(s):  
Hirra Anwar ◽  
Muhammad Awais Shibli ◽  
Umme Habiba

Numerous Cloud Identity Management (IdM) systems have been designed and implemented to meet the diverse functional and security requirements of various organizations. These requirements are subjective in nature; for instance, some government organizations require security more than efficiency while others prioritize performance and immediate response over security. However, most of the existing IdM systems are incapable of handling the user-centricity, security & technology requirements and are also domain specific. In this regard, this chapter elaborates the need to use Cloud Computing technology for enhancing the effectiveness and transparency of IdM functions and presents a comprehensive and well-structured Extensible IdM Framework for Cloud based e-government institutions. We present the design and implementation details of the proposed framework, followed by a case study which shows how government organizations of Pakistan would use the proposed framework to improve their IdM processes and achieve diverse IdM services.


2016 ◽  
Vol 9 (3) ◽  
pp. 157 ◽  
Author(s):  
Esmaeil Mehraeen ◽  
Marjan Ghazisaeedi ◽  
Jebraeil Farzi ◽  
Saghar Mirshekari

<p><strong>BACKGROUND:</strong> Healthcare data are very sensitive records that should not be made available to unauthorized people in order for protecting patient's information security. However, in progressed technologies as cloud computing which are vulnerable to cyber gaps that pose an adverse impact on the security and privacy of patients’ electronic health records and in these situations, security challenges of the wireless networks need to be carefully understood and considered. Recently, security concerns in cloud computing environment are a matter of challenge with rising importance.</p><p><strong>OBJECTIVE:</strong> In this study a systematic review to investigate the security challenges in cloud computing was carried out. We focused mainly on healthcare cloud computing security with an organized review of 210 full text articles published between 2000 and 2015.</p><p><strong>METHOD:</strong> A systematic literature review was conducted including PubMed, Science direct, Embase, ProQuest, Web of science, Cochrane, Emerald, and Scopus databases.</p><p><strong>FINDINGS:</strong> Using the strategies described, 666 references retrieved (for research question one 365, research question two 201, and research question three 100 references).</p><p><strong>IMPROVEMENTS:</strong> Review of articles showed that for ensuring healthcare data security, it is important to provide authentication, authorization and access control within cloud's virtualized network. Issues such as identity management and access control, Internet-based access, authentication and authorization and cybercriminals are major concerns in healthcare cloud computing. To manage these issues<strong> </strong>many involved events such as Hybrid Execution Model, VCC-SSF, sHype Hypervisor Security Architecture, Identity Management, and Resource Isolation approaches<em> </em>have to be defined for using cloud computing threat management processes.</p>


Author(s):  
Muna Mohammed Saeed Altaee ◽  
Mafaz Alanezi

In recent years, the trend has increased for the use of cloud computing, which provides broad capabilities with the sharing of resources, and thus it is possible to store and process data in the cloud remotely, but this (cloud) is untrusted because some parties can connect to the network such as the internet and read or change data because it is not protected, therefore, protecting data security and privacy is one of the challenges that must be addressed when using cloud computing. Encryption is interested in the field of security, confidentiality and integrity of information that sent by a secure connection between individuals or institutions regardless of the method used to prepare this connection. But using the traditional encryption methods to encrypt the data before sending it will force the data provider to send his private key to the server to decrypt the data to perform computations on it. In this paper we present a proposal to secure banking data transmission through the cloud by using partially homomorphic encryption algorithms such as (paillier, RSA algorithm) that allow performing mathematical operations on encrypted data without needing to decryption. A proxy server will also use for performing re-encryption process to enhance security.


Author(s):  
Manoj V. Thomas ◽  
K. Chandrasekaran

Nowadays, the issue of identity and access management (IAM) has become an important research topic in cloud computing. In the distributed computing environments like cloud computing, effective authentication and authorization are essential to make sure that unauthorized users do not access the resources, thereby ensuring the confidentiality, integrity, and availability of information hosted in the cloud environment. In this chapter, the authors discuss the issue of identity and access management in cloud computing, analyzing the work carried out by others in the area. Also, various issues in the current IAM scenario in cloud computing, such as authentication, authorization, access control models, identity life cycle management, cloud identity-as-a-service, federated identity management and also, the identity and access management in the inter-cloud environment are discussed. The authors conclude this chapter discussing a few research issues in the area of identity and access management in the cloud and inter-cloud environments.


Author(s):  
Hirra Anwar ◽  
Muhammad Awais Shibli ◽  
Umme Habiba

Numerous Cloud Identity Management (IdM) systems have been designed and implemented to meet the diverse functional and security requirements of various organizations. These requirements are subjective in nature; for instance, some government organizations require security more than efficiency while others prioritize performance and immediate response over security. However, most of the existing IdM systems are incapable of handling the user-centricity, security & technology requirements and are also domain specific. In this regard, this chapter elaborates the need to use Cloud Computing technology for enhancing the effectiveness and transparency of IdM functions and presents a comprehensive and well-structured Extensible IdM Framework for Cloud based e-government institutions. We present the design and implementation details of the proposed framework, followed by a case study which shows how government organizations of Pakistan would use the proposed framework to improve their IdM processes and achieve diverse IdM services.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Eghbal Ghazizadeh ◽  
Mazdak Zamani ◽  
Jamalul-lail Ab Manan ◽  
Mojtaba Alizadeh

Cloud computing is a new generation of technology which is designed to provide the commercial necessities, solve the IT management issues, and run the appropriate applications. Another entry on the list of cloud functions which has been handled internally is Identity Access Management (IAM). Companies encounter IAM as security challenges while adopting more technologies became apparent. Trust Multi-tenancy and trusted computing based on a Trusted Platform Module (TPM) are great technologies for solving the trust and security concerns in the cloud identity environment. Single sign-on (SSO) and OpenID have been released to solve security and privacy problems for cloud identity. This paper proposes the use of trusted computing, Federated Identity Management, and OpenID Web SSO to solve identity theft in the cloud. Besides, this proposed model has been simulated in .Net environment. Security analyzing, simulation, and BLP confidential model are three ways to evaluate and analyze our proposed model.


Author(s):  
Alexandre B. Augusto ◽  
Manuel E. Correia

In this chapter, the authors propose and describe an identity management framework that allows users to asynchronously control and effectively share sensitive dynamic data, thus guaranteeing security and privacy in a simple and transparent way. Their approach is realised by a fully secure mobile identity digital wallet, running on mobile devices (Android devices), where users can exercise discretionary control over the access to sensitive dynamic attributes, disclosing their value only to pre-authenticated and authorised users for determined periods of time. For that, the authors rely on an adaptation of the OAuth protocol to authorise and secure the disclosure of personal-private user data by the usage of token exchange and new XML Schemas to establish secure authorisation and disclosure of a set of supported dynamic data types that are being maintained by the personal mobile digital wallet. The communication infrastructure is fully implemented over the XMPP instant messaging protocol and is completely compatible with the public XMPP large messaging infrastructures already deployed on the Internet for real time XML document interchange.


2019 ◽  
Vol 8 (2) ◽  
pp. 6117-6122

From hairbrushes to scales, all devices have sensors embedded in them to collect and communicate data. Smart Healthcare is proving to be an exciting and dynamic area with lots of room for new innovations and the increasing consumer demand for proactive health monitoring devices. Having India poised to spend a lot on healthcare, recent innovations using IoT devices and big data analytics can propel the healthcare industry into the future. Smart healthcare providers are leveraging cloud computing with fog computing to optimize their healthcare services. These smart healthcare applications depend mainly on the raw sensor data collected, aggregated, and analyzed by the smart sensors. Smart sensors these days generate myriad amount of data like text, image, audio, and video that require real-time or batch processing. Aggregating these diverse data from various types of resources remains a dispute till date. To resolve this issue, we have proposed a softwarized infrastructure that integrates cloud computing and fog computing, message brokers, and Tor for supple, safe, viable, and a concealed IoT exploitation for smart healthcare applications and services. Our proposed platform employs machine-to-machine (M2M) messaging, data fusion and decision fusion, and uses rule-based beacons for seamless data management. Our proposed flexBeacon system provides an IoT infrastructure that is nimble, secure, flexible, private, and reasonable. We have also proposed an M2M transceiver and microcontroller for flawless data incorporation of smart healthcare applications and services. Based on the IoT devices’ technical capabilities and resource availability, some systems are capable of making use of homomorphic encryption and zero knowledge proofs. The proposed flexBeacon platform offers seamless management and data aggregation without loss of accuracy. The cost of implementing a softwarized IoT for smart healthcare is also greatly reduced.


2016 ◽  
pp. 38-68
Author(s):  
Manoj V. Thomas ◽  
K. Chandrasekaran

Nowadays, the issue of identity and access management (IAM) has become an important research topic in cloud computing. In the distributed computing environments like cloud computing, effective authentication and authorization are essential to make sure that unauthorized users do not access the resources, thereby ensuring the confidentiality, integrity, and availability of information hosted in the cloud environment. In this chapter, the authors discuss the issue of identity and access management in cloud computing, analyzing the work carried out by others in the area. Also, various issues in the current IAM scenario in cloud computing, such as authentication, authorization, access control models, identity life cycle management, cloud identity-as-a-service, federated identity management and also, the identity and access management in the inter-cloud environment are discussed. The authors conclude this chapter discussing a few research issues in the area of identity and access management in the cloud and inter-cloud environments.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Changqing Gong ◽  
Mengfei Li ◽  
Liang Zhao ◽  
Zhenzhou Guo ◽  
Guangjie Han

With the rapid development of the 5G network and Internet of Things (IoT), lots of mobile and IoT devices generate massive amounts of multisource heterogeneous data. Effective processing of such data becomes an urgent problem. However, traditional centralised models of cloud computing are challenging to process multisource heterogeneous data effectively. Mobile edge computing (MEC) emerges as a new technology to optimise applications or cloud computing systems. However, the features of MEC such as content perception, real-time computing, and parallel processing make the data security and privacy issues that exist in the cloud computing environment more prominent. Protecting sensitive data through traditional encryption is a very secure method, but this will make it impossible for the MEC to calculate the encrypted data. The fully homomorphic encryption (FHE) overcomes this limitation. FHE can be used to compute ciphertext directly. Therefore, we propose a ciphertext arithmetic operation that implements data with integer homomorphic encryption to ensure data privacy and computability. Our scheme refers to the integer operation rules of complement, addition, subtraction, multiplication, and division. First, we use Boolean polynomials (BP) of containing logical AND, XOR operations to represent the rulers. Second, we convert the BP into homomorphic polynomials (HP) to perform ciphertext operations. Then, we optimise our scheme. We divide the ciphertext vector of integer encryption into subvectors of length 2 and increase the length of private key of FHE to support the 3-multiplication level additional. We test our optimised scheme in DGHV and CMNT. In the number of ciphertext refreshes, the optimised scheme is reduced by 2/3 compared to the original scheme, and the time overhead of our scheme is reduced by 1/3. We also examine our scheme in CNT of without bootstrapping. The time overhead of optimised scheme over DGHV and CMNT is close to the original scheme over CNT.


Sign in / Sign up

Export Citation Format

Share Document