scholarly journals Numerical Study of the Coupling of Sub-Terahertz Radiation to n-Channel Strained-Silicon MODFETs

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 688
Author(s):  
Jaime Calvo-Gallego ◽  
Juan A. Delgado-Notario ◽  
Jesús E. Velázquez-Pérez ◽  
Miguel Ferrando-Bataller ◽  
Kristel Fobelets ◽  
...  

This paper reports on a study of the response of a T-gate strained-Si MODFETs (modulation-doped field-effect transistor) under continuous-wave sub-THz excitation. The sub-THz response was measured using a two-tones solid-state source at 0.15 and 0.30 THz. The device response in the photovoltaic mode was non-resonant, in agreement with the Dyakonov and Shur model for plasma waves detectors. The maximum of the photoresponse was clearly higher under THz illumination at 0.15 THz than at 0.3 THz. A numerical study was conducted using three-dimensional (3D) electromagnetic simulations to delve into the coupling of THz radiation to the channel of the transistor. 3D simulations solving the Maxwell equations using a time-domain solver were performed. Simulations considering the full transistor structure, but without taking into account the bonding wires used to contact the transistor pads in experiments, showed an irrelevant role of the gate length in the coupling of the radiation to the device channel. Simulations, in contradiction with measurements, pointed to a better response at 0.3 THz than under 0.15 THz excitation in terms of the normalized electric field inside the channel. When including four 0.25 mm long bonding wires connected to the contact pads on the transistor, the normalized internal electric field induced along the transistor channel by the 0.15 THz beam was increased in 25 dB, revealing, therefore, the important role played by the bonding wires at this frequency. As a result, the more intense response of the transistor at 0.15 THz than at 0.3 THz experimentally found, must be attributed to the bonding wires.

2020 ◽  
Vol 10 (17) ◽  
pp. 5959
Author(s):  
Juan A. Delgado-Notario ◽  
Jaime Calvo-Gallego ◽  
Jesús E. Velázquez-Pérez ◽  
Miguel Ferrando-Bataller ◽  
Kristel Fobelets ◽  
...  

Plasma waves in semiconductor gated 2-D systems can be used to efficiently detect Terahertz (THz) electromagnetic radiation. This work reports on the response of a strained-Si Modulation-doped Field-Effect Transistor (MODFET) under front and back sub-THz illumination. The response of the MODFET has been characterized using a two-tones solid-state continuous wave source at 0.15 and 0.30 THz. The DC drain-to-source voltage of 500-nm gate length transistors transducing the sub-THz radiation (photovoltaic mode) exhibited a non-resonant response in agreement with literature results. Two configurations of the illumination were investigated: (i) front side illumination in which the transistor was shined on its top side, and (ii) back illumination side where the device received the sub-THz radiation on its bottom side, i.e., on the Si substrate. Under excitation at 0.15 THz clear evidence of the coupling of terahertz radiation by the bonding wires was found, this coupling leads to a stronger response under front illumination than under back illumination. When the radiation is shifted to 0.3 THz, as a result of a lesser efficient coupling of the EM radiation through the bonding wires, the response under front illumination was considerably weakened while it was strengthened under back illumination. Electromagnetic simulations explained this behavior as the magnitude of the induced electric field in the channel of the MODFET was considerably stronger under back illumination.


2019 ◽  
Author(s):  
Huan Zhang ◽  
You-He Zhou

Abstract. Particle tribo-electrification being ubiquitous in nature and industry, potentially plays a key role in dust events, including the lifting and transport of sand and dust particles. However, the properties of electric field (E-field) and its influences on saltation during dust storms remain obscure as the high complexity of dust storms and the existing numerical studies mainly limited to one-dimensional (1-D) E-field. Here, we quantify the effects of real three-dimensional (3-D) E-field on saltation, through a combination of field observations and numerical modelling. The 3-D E-fields in the sub-meter layer from 0.05 to 0.7 m above the ground during a dust storm are measured at Qingtu Lake Observation Array site. The measured results show that each component of the 3-D E-field data nearly collapses on a single 3-order polynomial curve when normalized. Interestingly, the vertical component of the 3-D E-field increases with increasing height in the saltation layer during dust storms. Such 3-D E-field data close to the ground within a few centimeters has never been reported and formulated before. Using the discrete element method, we then develop a comprehensive saltation model, in which the tribo-electrification between particle-particle midair collisions is explicitly accounted for, allowing us to evaluate the tribo-electrification in saltation properly. By combining the results of measurements and modelling, we find that although the vertical component of the E-field (i.e. 1-D E-field) inhibits sand transport, 3-D E-field enhances sand transport substantially. Furthermore, the model predicts that 3-D E-field enhances the total mass flux by up to 63 %. This suggests that a truly 3-D E-field consideration is necessary if one is to explain precisely how the E-field affects saltation during dust storms. These results will further improve our understanding of particle tribo-electrification in saltation and help to provide more accurate characterizations of sand and dust transport during dust storms.


2020 ◽  
Vol 19 (3) ◽  
pp. 395-406
Author(s):  
Jesús Fernández Ruiz ◽  
◽  
Luis Medina Rodríguez

Continuous wave barriers are mitigation measures to reduce vibrations induced by railway traffic which have been well studied in technical literature. Nevertheless, there are not many studies about discontinuous concrete wave barriers. By this reason, in this paper continuous and discontinuous concrete wave barriers are studied and compared. With this objective, two theoretical cases with discontinuous barriers have been analysed and the results have been compared with those from both continuous barriers and without barriers cases. The study has been carried out with a dynamic numerical 3D FEM model formulated in the space/time domain, which has previously been validated by authors on the Lisbon-Oporto (Portugal) railway line. The numerical results show the discontinuous barriers with a small separation between axles (less than twice the thickness of the continuous barrier) are an efficient measure in the reduction of vibrations, reaching values of insertion loss of up to 13 dB. So, these could be a very interesting alternative to continuous barriers, in order to conjugate a somewhat lower level of reduction of vibration at a considerable lower cost.


1997 ◽  
Vol 473 ◽  
Author(s):  
Heng-Chih Lin ◽  
Edwin C. Kan ◽  
Toshiaki Yamanaka ◽  
Simon J. Fang ◽  
Kwame N. Eason ◽  
...  

ABSTRACTFor future CMOS GSI technology, Si/SiO2 interface micro-roughness becomes a non-negligible problem. Interface roughness causes fluctuations of the surface normal electric field, which, in turn, change the gate oxide Fowler-Nordheim tunneling behavior. In this research, we used a simple two-spheres model and a three-dimensional Laplace solver to simulate the electric field and the tunneling current in the oxide region. Our results show that both quantities are strong functions of roughness spatial wavelength, associated amplitude, and oxide thickness. We found that RMS roughness itself cannot fully characterize surface roughness and that roughness has a larger effect for thicker oxide in terms of surface electric field and tunneling behavior.


Author(s):  
C. Abegg ◽  
Graham de Vahl Davis ◽  
W.J. Hiller ◽  
St. Koch ◽  
Tomasz A. Kowalewski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document